
Virtual EZ Grid: A Volunteer Computing infrastructure

for scientific medical applications

Mohamed Ben Belgacem
1
, Nabil Abdennadher

2
, Marko Niinimaki2

1
University of Geneva, Switzerland

mohamed.benbelgacem@unige.ch
2
University of Applied Sciences Western Switzerland, hepia Geneva, Switzerland

{nabil.abdennadher, markopekka.niinimaeki}@hesge.ch

Abstract. This paper presents the Virtual EZ Grid project, based on the
XtremWeb-CH (XWCH) volunteer computing platform. The goal of the project
is to introduce a flexible distributed computing system, with (i) a non-trivial
number of computing resources infrastructure from various institutes, (ii) a
stable platform that manages these computing resources and provides advanced
interfaces for applications, and (iii) a set of applications that take benefit of the
platform. This paper concentrates on the application support of the new version

of XWCH, and describes how a medical image application MedGIFT utilises it.

1 Introduction

Nowadays, volunteer computing (VoC) and grid computing are a well-established

paradigm of distributed computing. The term “volunteer computing” is used for all

scenarios where a low priority guest application can run on unused remote resources

without significantly impacting high priority host applications. In volunteer

computing individuals donate unused or idle resources of their computers to
distributed high performance computing applications.

On the other hand, Grid computing is the combination of computer resources from

multiple administrative domains applied to a common application that requires a great

number of computer processing cycles or the need to process large amounts of data.

There are several characteristics that distinguish the volunteer computing from Grid

[1]:

- The number of volunteer nodes in VoC systems may range from less than 10

to hundreds of thousands.

- Volunteered resources are owned and managed by regular people, not by IT

professionals

- Volunteers are anonymous, and those who misbehave cannot be fired or
prosecuted

- Volunteered resources are often behind network firewalls that do not allow

incoming connections

- Volunteer computing is asymmetric: volunteers supply resources, and not the

other way round.

Grid and VoC platforms are organised with the help of middleware systems.

The most known grid systems are gLite [2], ARC [3], Globus [4], Unicore [5],

Condor [6] and GridMP [7].

Berkeley Open Infrastructure for Network Computing (BOINC) [8] is the most
widely used middleware in volunteer computing. XtremWeb (XW) [9] is a VoC

middleware providing a framework and a set of tools to assist in the creation of

volunteer computing projects.

XtremWeb-CH (XWCH: www.xtremwebch.net) [10], developed by the authors of this

paper improves XW through the usage of peer-to-peer concepts. XWCH is an

upgraded version of (XW). Major improvements have been brought to it in order to

obtain a reliable and efficient system. Its software architecture was completely re-

designed. The first version of XtremWeb-CH (XWCH1) is composed of three kinds of

peers: the coordinator, the workers and the warehouses. Several applications have

been deployed on XWCH1 [11]. [12] details the limits of the XWCH1 middleware. To

overcome these drawbacks, a second version (XWCH2) was developed. This version
is currently being used to deploy several desktop grid and VoC infrastructures such as

Virtual EZ Grid [13] and From Peer-to-Peer (From-P2P) [14]. One of the main

objectives of these two projects is to deploy scientific medical applications. Three

applications are being gridified within these projects, but for the sake of brevity we

only discuss one of them.

This paper is organised as follow: the next section presents the new features of

XWCH2. Section 3 details the architecture of the Virtual EZ Grid infrastructure while

section 4 presents one example of a medical application deployed on the Virtual EZ

Grid platform: MedGIFT. Finally, section 5 gives some perspectives of this research

2 XtremWeb-CH2 (XWCH2)

The new version of XWCH features improved support for parallel distributed

applications. The extensions carried out are application driven. They were deduced

from experiments carried out and lessons learned during the gridification and the

deployment of several applications [15]. In more detail, the main improvements of

XWCH2 can be summarized as: dynamic task generation, flexible data sharing (data
replication) and persistent tasks.

This paper will only detail the “dynamic task generation” aspect.

We shall also show improvements in the way the user communicates with the system,

through its application programming interface (API) in section 2.2.

http://www.xtremwebch.net/

2.1. The XWCH2 architecture

Figure 1 illustrates the principal changes in the XWCH2 architecture. Job submission

is done by a flexible API, available for Java and C/C++ programs. The interfaces of

the coordinator now contain user service and worker services, both of which are web

services, implemented using WSDL [16].

Like in the earlier version of XWCH, the basic architecture of XWCH2 consists of a
coordinator, a set of worker nodes and at least one warehouse node [10]. However,

contrarily to XWCH1, jobs are submitted to the coordinator by a “client node” which

executes a client program that calls the services provided by XWCH2. The coordinator

schedules jobs and pre-assign them to the workers. The workers retrieve the

executable files and input files from warehouses (or other workers), compute the jobs,

and store their outputs in the warehouses. The coordinator and at least one of the

warehouses are assumed to be available to the workers involved in the execution of

jobs created by the same client program. Communication between the coordinator and

the workers is always initiated by the workers (Work request, Work Alive and Work

Result in Figure 1); thus workers can receive tasks and send results even if they are

run in "out-bound connectivity only" environments, like NAT sub-networks.

Since XWCH2 can be used as a volunteer computing platform, it is not reasonable to
assume that any two workers can always communicate directly with each other.

Organizations have firewalls and NAT (Network Address Translation) sub-networks

that protect the organization's network by limiting connectivity to/from the outside

world. In XWCH, the workers can communicate directly with each other whenever it

is possible, otherwise through a warehouse.

Figure 1: XWCH2 architecture

 An XWCH application is composed of a set of communicating jobs and can be

represented by a workflow. The number of jobs and the structure of the workflow

cannot be known in advance. Jobs are created by the client program by calling a

specific service of XWCH2.

2.2 Dynamic tasks generation

In what follows, we give a brief summary of the Java API functions (Table 1) that

allows user to create XWCH jobs according to his/her needs. The entire API

documentation is available at the XWCH web site www.xtremwebch.net.

XWCHClient (java.lang.String

serverendpoint, java.lang.String
datafolder, java.lang.String

clientID)

This method creates a “connection” with the

coordinator. Serverendpoint refers to the URL of
the user services in Figure 1. Datafolder is a local

folder (client node) where the binaries and input

files exist.

AddApplication

(java.lang.String app_name)

This method adds an application to the

coordinator. It returns an application_id.

AddModule (java.lang.String

module_name)*

This method adds a “module” to the coordinator

and returns a module_id. A module is as set of

binary codes having, in general, the same source

code. Each binary code targets a specific (OS,

CPU) platform.

AddModuleApplication

(java.lang.String module_name,

java.lang.String binaryzip,
PlatformType)

Adds an executable binary file to a given module.

This is "per platform" basis, i.e. different binary

files can be added for each of the platform (MS
Windows, MacOS, Linux, Solaris, etc.).

AddData (java.lang.String

app_name)

Adds an input file to the application app_name.

This method is often used to upload the input data

of one application (one execution) into the XWCH

system.

AddJob (java.lang.String

jobname, java.lang.String

app_name, java.lang.String

module_name, java.lang.String

command_line,
java.lang.String inputfiles,

java.lang.String outfilespec,

java.lang.String outfilename,

java.lang.String flags)

This method submits a job to the coordinator. A

job ID is returned. app_name and module_name

refer to the application and the module to which

the job belongs. command_line is the command

that invokes the binary with parameters (in the

worker). inputfiles represent the set of input files

of the given job. outfilename refers to a name that
will be given to the compressed output file. By

"flags" the programmer can pass specific

distribution related options to XWCH2 (replicate

output data on several warehouses, execute a set of

tasks on the same worker, execute one task on a

given worker, etc.).

GetJobStatus (java.lang.String

Job_ID)

Gets the status of the job.

http://www.xtremwebch.net/

GetJobFileOutName(java.lang.

String Job_ID)

Gives the “reference” (identifier) of the Job's

output file.

GetJobResult (java.lang.String

Job_ID, java.lang.String

outfilename)

Gets the output file (output data) of a given job.

Table 1: XWCH2 Java API

An example of using the API to create and execute three communicating jobs: Job1,

Job2 and Job3. Job2 and Job3 are using the output of Job1 as input data.

// Initialisation of the connection

c = new XWCHClient(ServerAddress, ".", IdClient,1,9);

c.init();

String appid = c.AddApplication("Hello World application");

String ModuleId1 = c.AddModule("Module1");

String refWind = c.AddModuleApplication (ModuleId1,

BinaryPath_Module1_win, PlateformEnumType.WINDOWS); //Windows binary

String ModuleId2 = c.AddModule("Module2");

String refProcesswindows = c.AddModuleApplication(ModuleId2,

BinaryPath_Module2_win, PlateformEnumType.LINUX); //Linux binary

. . .

String job0 = c.AddJob ("First Job", //Job description

appid, //Application ID

ModuleId1, // Module identifier

CmdLine_for_job0, //Command line

frefjob0.toJobReference(),

liste_files_out_job0,

file_out_id_job0,

 "");

//Wait until job0 ends

String status = "";

while (!status.equalsIgnoreCase("COMPLETE")) status =

c.GetJobStatus(job0).toString();

// Retrieve the reference of the output file of job0

String inputforJobs_1_and_2 = c.GetJobFileOutName(job0);

http://www.xtremwebch.net/javaapi/javadoc/xwchclientapi/XWCHClient.html#GetJobFileOutName(java.lang.String)

String job1 = c.AddJob ("second Job", //Job description

appid, //Application ID

ModuleId2, // Module identifier

CmdLine_for_job1, //Command line

inputforJobs_1_and_2,

liste_files_out_job1,

file_out_id_job1,

"");

String job2 = c.AddJob ("Third Job", //Job description

appid, //Application

identifier

ModuleId2, // Module identifier

CmdLine_for_job2, //Command line

inputforJobs_1_and_2,

liste_files_out_job2,

file_out_id_job2,

"");

//Wait until job1 and job2 end, by using "GetJobStatus" method (table 1)

String status = "";

while (!status.equalsIgnoreCase("COMPLETE")) status =

c.GetJobStatus(job1).toString();

status = "";

while (!status.equalsIgnoreCase("COMPLETE")) status =

c.GetJobStatus(job2).toString();

GetJobResult (job1, file_out_id_job1);

GetJobResult (job2, file_out_id_job2);

This client program does not show the different features supported by XWCH2.

Nevertheless, it details how XWCH2 handles communication and precedence rules
between jobs. Although this program does not show it, calls to XWCH2 services can

take place in loops and tests controls. This means that the number of jobs and the

structure of the graph representing the application are not known in advance.

3 The Virtual EZ Grid project

This section presents a desktop Grid infrastructure called Virtual EZ Grid

(http://www.xtremwebch.net/Projects/Virtual_EZ_Grid/EZ_Home.html). This

platform, based on XWCH2 middleware, is mainly used to deploy and execute three

scientific medical applications. This section presents the architecture of the Virtual EZ

Grid project while section 4 presents only one application: MedGIFT.

3.1 Virtual EZ Grid in brief

The aim of Virtual EZ Grid is to establish a sustainable desktop Grid platform across

several institutions. Three main goals are targeted by the project:

1. Construct a desktop grid infrastructure with non dedicated desktop PCs to

provide harvested CPU power for scientific research projects.

2. Implement a reliable platform by using virtual environments to support

secure computing and remote check-pointing. Virtual EZ Grid aims at

providing a better control over environmental issues and energy consumption

by running only the necessary PCs and shutting down unused PCs at night

and during holidays. The proposed platform should give a non-intrusive

experience to the PC users.

3. Evaluate the two first objectives in a real world setting with the several
medical applications.

The Virtual EZ Grid architecture is shown in Figure 3.

Figure 3: The Virtual EZ Grid architecture

JOpera

XWCH2

EZ-GRID

Infrastructure

http://www.xtremwebch.net/Projects/Virtual_EZ_Grid/EZ_Home.html).%20This

The three main supported tools of Virtual EZ Grid are: XWCH2, JOpera and EZ-Grid.

JOpera (http://www.jopera.org) is an open grid workflow management system. It

provides a visual environment based on the Eclipse platform for modelling grid

workflows as a collection of jobs linked by control and data flow dependencies.

EZ Grid: it’s a PC grid infrastructure based on the concept of virtualization. On top of

this fundamental layer, other functionalities are also considered, such as job check-

pointing, restarting and migration. These features are necessary in order to offer a

flexible environment with minimal disturbances for both the owner of the PC and the
owner of the job.

The user can submit his/her application via the workflow management system JOpera

or directly through the XWCH2 middleware. XWCH2 can be deployed natively or as a

virtual machine (Figure 3).

4 The MedGIFT application

One of the applications gridified and deployed on Virtual EZ Grid is MedGIFT.

Content-based image retrieval is increasingly being used as a diagnostic aid in

hospitals [17]. However, hospitals produce large amounts of images -- for instance the

University Hospitals of Geneva radiology department produced about 70 000 images

per day in 2007 [18]. Preparing these images in such a way that they can be used in

diagnosis is a challenging task due to their volume. Content-based image retrieval

systems typically use image features like properties of textures and colours [19]; here,

we call the extracting features from images indexing.

The well-known GIFT, or Gnu Image Finding Tool, software is a content-based
image indexing and retrieval package was developed at University of Geneva in the

late 1990's. GIFT utilizes techniques common from textual information retrieval and

uses a very large collection of binary-valued features (global and local colour and

texture features) [19]. GIFT extract these features and stores them in an inverted file.

In a typical desktop PC, the speed of indexing is about 1 or 2 images per second.

The history of the ImageCLEFMed image collection can be summarized as follows:

ImageCLEF started within CLEF (Cross Language Evaluation Forum) in 2003. A

medical image retrieval task was added in 2004 to explore domain-specific

multilingual visual information retrieval [20]. The ImageCLEFMed2007 used in this

report consists of about 50 000 images, originally from radiological journals

Radiology and Radiographics. The images are originals used in published articles.

Indexing a set of images can be seen as an "embarrassingly parallel" problem, i.e. "a
problem in which little or no effort is required to separate the problem into a number

of parallel tasks. This is often the case where there exists no dependency (or

communication) between those parallel tasks." [21] Therefore indexing a large set (S)

of images can be done by dividing S into small subsets, sending the subsets together

with processing instructions into processing nodes, and then combining the output of

the processing nodes.

http://www.jopera.org/

The workflow for MedGIFT can be summarized as follow:

 Process PACKETGENERATOR runs in a client computer, using a directory

of the ImageCLEFMed2007 sample as its input.

 PACKETGENERATOR generates packages that consist of the GIFT indexer

program (executable), a batch file containing instructions of how to run it in

the worker nodes, and an input zip file containing 1000 images (except for

the last package).

 After each package has been generated, PACKETGENERATOR submits it
to XWCH as a task.

 When all the tasks have been submitted, PACKETGENERATOR examines

their statuses. When a status indicates that the task has been finished,

PACKETGENERATOR downloads its output.

The process of executing PACKETGENERATOR (=the entire

packaging/submission/result retrieving process) took 4 hours 53 minutes 58 seconds

(=17638 seconds). This figure is comparable with those achieved by the ARC Grid

middleware in [18]. Individual execution for packages in the worker nodes are shown

in Figure 4. The short execution time of the last package is because it contained only

25 images. The average of the execution times was 1006 seconds (=16 min 36
seconds) and the sum of the execution times 51316 seconds. The figure of 51316

seconds (ca 14 hours) would thus roughly correspond with executing the whole task

on a single CPU.

Figure 4: MedGIFT package execution times.

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748495051

0

200

400

600

800

1000

1200

1400

1600

1800

2000

5. Conclusion

This paper has presented the new version of the volunteer computing environment

XtremWeb-CH (XWCH2), used for the execution of high performance applications on

a highly heterogeneous distributed environment. XWCH2 is used in the Virtual EZ

Grid project, where the computing nodes are provided from different institutes, and

applications are built so that they utilise the XWCH2 API directly, or by a JOpera

workflow engine interface.

We have presented the details of the new features of XWCH2, in particular dynamic

task creation. MedGIFT image indexing, a distributed application, is used as an

example of a software that utilises the Virtual EZ Grid platform.

Acknowledgements

We gratefully acknowledge that:

- The Virtual EZ Grid project is in part funded via AAA/SWITCHand

- The right to use the ImageCLEFMed2007 was granted by Henning Muller on

the basis that Marko Niinimaki was still a member of UNIGE's MedGIFT

team in 2009.

References

[1] D.P. Anderson. Opinion - Volunteer computing: Grid or not Grid?. iSGTW newsletter,
July 4, 2007

[2] gLite. http://glite.web.cern.ch/glite/
[3] Advanced Resource Connector (ARC). http://www.nordugrid.org/middleware/
[4] Globus. http://www.globus.org/
[5] Unicore. http://www.unicore.eu/

[6] M. Litzkow, M. Livny and M. Mutka: Condor - A Hunter of Idle Workstations. In
Proceedings of the 8th IEEE Distributed Computing Conference, 1988.

[7] GridMP. http://www.univaud.com/hpc/products/grid-mp/
[8] D. P. Anderson: BOINC: A system for public-resource computing and storage. ACM

International Workshop on Grid Computing, 2004.
[9] F. Cappello, S. Djilali, G. Fedak, T. Herault, F. Magniette, V. Neri and O. Lodygensky:

Computing on Large Scale Distributed Systems: XtremWeb Architecture,
Programming Models, Security, Tests and Convergence with Grid. FGCS Future

Generation Computer Science, 2004.
[10] N. Abdennadher and R. Boesch: Towards a peer-to-peer platform for high performance

computing, Proc. Eighth Intl. Conf. On High-Performance Computing in Asia-Pacific
Region, 2005.

[11] N. Abdennadher and R. Boesch: A Scheduling algorithm for High Performance Peer-
To-Peer Platform. CoreGrid Workshop, Euro-Par 2006, Dresden, Germany, August
2006 .

http://www.univaud.com/hpc/products/grid-mp/

[12] N. Abdennadher, C. Evéquoz and C Bilat: Gridifying Phylogeny and Medical
Applications on the Volunteer Computing Platform XtremWeb-CH. HealthGrid 2008,
vol 134, IOS Press, 2008.

[13] Virtual_EZ_Grid. Http://www.xtremwebch.net/Projects/Virtual_EZ_Grid
[14] From-P2P. http://bilbo.iut-bm.univ-fcomte.fr/fromP2P/
[15] Nabil Abdennadher, Using the Volunteer Computing platform XtremWeb-CH: lessons

and perspectives. ACSE’09, March 2009, Phuket (Thailand), 2009.
[16] D. A. Chappell and T. Jewell: Java Web Services, O'Reilly, 2002.
[17] H. Mueller, N. Michoux, D.Bandon, and A. Geissbuhler: A review of content-based

image retrieval systems in medicine – clinical benefits and future directions.
International Journal of Medical informatics, 73:1-23, 2004.

[18] M. Niinimaki, X. Zhou, A. Depeursinge, A. Geissbuhler and H. Mueller: Building a
Community Grid for Medical Image Analysis inside a Hospital, a Case Study. MICCAI
Grid Workshop, New York University, September 2008.

[19] D. M. Squire, W. Mueller, H. Mueller, T. Pun: Content-based query of image
databases, inspirations from text retrieval: inverted files, frequency-based weights and
relevance feedback. Technical Report 98.04, Computer Vision Group, Computing
Centre, University of Geneva, 1998.

[20] H. Müller, J. Kalpathy-Cramer, C. E. Kahn Jr., W. Hatt, S. Bedrick and W. Hersh:
Overview of the ImageCLEFmed 2008 Medical Image Retrieval Task, Evaluating

Systems for Multilingual and Multimodal Information Access, LNCS Volume
5706/2009, 2009.

[21] I. Foster. Designing and Building Parallel Programs. Addison-Wesley, 1995.

