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Abstract

Abstract

Road traffic is the main source of environmental noise As it is the main source of
environmental noise, people living in urban areas are much more exposed to these
health risks. According to United Nations (UN)’s 2018 revision of world urbanization
prospects [1], in 2018 the percentage of the world’s population living in urban areas
was 56%. By 2050, this percentage will be 68%. In order to reduce noise exposures, it
is first necessary to understand how noise propagates in cities This paper proposes
a partial solution to address the smart city noise sensors data integrity problem.
Our solution is integrated into the generic trust model framework in [2]. This paper
proposes a solution to build a signature trust factor (TF). Our solution starts with
a filter using Fourier Transform (FT) to address the data integrity problem smart
city devices suffer. Then we extract a signature from the cleaned data and run a
clustering algorithm on these signatures to group them and extract knowledge about
these contexts out of these signatures.
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Introduction

Introduction

Noise pollution

In the past few years, the impact of environmental noise on health has become a
real concern. According to reports from World Health Organization (WHO) [3] and
European Environment Agency (EEA) [4], noise pollution is a major environmental
health problem in Europe that causes at least 10 000 cases of premature death in
Europe each year. This report states that almost 20 million adults are annoyed and a
further 8 million suffer sleep disturbance due to environmental noise. Environmental
noise is also the source of 900’000 cases of hypertension each year. With the fact
that road traffic is the main source of environmental noise. As it is the main source
of environmental noise, people living in urban areas are much more exposed to these
health risks. According to United Nations (UN)’s 2018 revision of world urbanization
prospects [1], in 2018 the percentage of the world’s population living in urban areas
was 56%. By 2050, this percentage will be 68%.

The emergence of Internet of Things (IoT) brings a new opportunity to monitor
noise pollution. It allows policymakers to take initiatives to better understand noise
exposures in urban areas in order to minimize health risks to the population. IoT
is a very broad term that includes all ”things” connected to the internet. Among
the different fields of application of IoT, smart cities are of particular interest to
us. Smart cities are urban areas in which smart city devices (SCDs) are deployed
at a city scale to collect data. SCDs are equipped with one or more sensors and/or
actuators in order to act on the real world. By deploying this kind of smart city
infrastructure, it is, therefore, possible to collect noise recordings and analyze them
in order to better understand how noise affects the people living in a city. This
precious information will then enable measures to be taken to reduce the health
risks for these people.

SCD can take all forms and have a multitude of different tasks to perform de-
pending on their field of application. What all these devices have in common is
that they are very often subject to resource constraints such as a limited battery,
small communication channels, or low computing capacities. These SCDs are most
often composed of sensors such as microphones, thermometers, or any other type
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of sensor that allow them to collect data. SCDs are also able to communicate via
different technologies such as LoRa, 4G among others, but their computational re-
source limitations could prevent them from using encryption algorithms for these
communications. In addition to all these intrinsic constraints, they might also be
exposed to the physical world issues such as degradation due to meteorological risks,
accidental alterations by humans, or tampering.

SCDs record data and may or may not, depending on the smart city architecture
and the device computing capabilities, perform local pre-processing before sending
data to the cloud. All these devices communicate wirelessly. These communications
are also subject to the constraints mainly of batteries and small communication
channels. Indeed, the more a device communicates, the more it will consume battery
power, and the more it will occupy the communication channel that it can share with
other devices. In addition, it is likely that communications will not be successful
and data will be lost along the way. All these reasons, coupled with the fact that
the devices are often low-cost, mass-produced low-end devices for which quality is
never guaranteed, meaning that the integrity of the data collected can be affected.

In the context of smart cities, several applications could be deployed. These ap-
plications could, for example, run decision algorithms that would use the collected
data to make a good decision based on a given context. These algorithms could, for
example, decide to reduce the speed limit of a road in case of noise pollution exceed-
ing a threshold. In order to make the right decisions for different contexts, decision
algorithms need the collected data to accurately represent the context. However, all
of the reasons mentioned above can lead to data that does not accurately represent
reality. In summary, we have a data integrity problem.

The generic trust model

One of the solutions to this problem is to decide whether we trust or not the data
collected by the device using a trust model (TM). Generally speaking, a TM is an
agent that, under the hypothesis that a majority of devices behave well, is able to
detect when a device is misbehaving and tag it as such. In this work, we will focus
on the generic TM proposed in [2]. This TM operates in support layer of the IoT
application stack of figure 1 and can, therefore, detect abnormalities in either the
network layer or the perceptual layer.

IoT applications are often built upon a layered architecture stack as shown in
figure 1 [5]. In this architecture, each layer has its purpose and needs to communicate
with its upper and lower layers.

Perceptual layer interacts with the physical world. It can collect data or act on
its environment by interacting with actuators.
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Figure 1. Architecture of IoT systems

Network layer deals with the communication between the perceptual layer and
the support layer. Various means of communication can come into play in this
layer such as LoRa, z-wave, or Bluetooth among others.

Support layer responsible for making calculations. This layer is in the cloud.
Indeed, this layer being responsible for making calculations, it needs the large
calculation capacities offered by the cloud. The cloud can also be assisted by
edge devices. These devices, which are smarter than standard devices, are
halfway between the devices and the cloud. They are able to pre-process data
to avoid sending too much information to the cloud and thus limit the transfer
of large volumes of data.

Application layer Finally, the application layer is responsible for linking stake-
holders and data.

As shown in figure 2 the input of the TM is an interaction, i.e. a packet of data
sent by a device. The content of a packet depends on the IoT deployment and on
the nature of the devices that are deployed within it. For example, a device with a
camera will send an image and its resolution, while a device with a microphone will
send a sound recording and its sample rate. A packet also contains information about
the transmission that occurred in the Network layer. In summary, each traversed
layer, i.e. the perceptual layer and the Network layer, add elements to the packet.
Anomalies can slip through these layers. The TM must, therefore, detect each of
these anomalies. That’s the role of trust factors (TFs).

Each TF analyses an element of the interaction in order to quantify its quality
and thus detect any disturbance that could occur in the analyzed element. The
quality is expressed as trust factor score (TFS) a value between [0, 1] (the higher
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Figure 2. Generic trust model

the better). TFs are TM’s input. They must be defined when the IoT architecture
is deployed. Any disturbance that could occur must have a TF able to quantify
it. These scores are then aggregated and weighted by application coefficients in the
Global Trust Function (equation 1) to obtain a Global Trust Score.

GlobalTrustScore(ID, A) =

∑n
i=1 C

A
i × TFSD

i∑n
i=1C

A
i

∈ [0, 1] (1)

Where ID is an interaction comming from device D, A is the application, TFSD
i ∈

[0, 1] is the trust factor score (TFS) of the ith element of the interaction and CA
i is

the ith coefficient of the application A.

Different applications might have different tolerance to disturbance. Thus ap-
plication coefficients are weights that are defined by the application to have power
on which parameter is important to decide whether an interaction is trustful. They
must, therefore, be defined by domain experts. Let’s consider a smart city deploy-
ment of devices equipped with cameras. Above this deployment, two applications
use the data provided by the devices. The first one is a car counting application.
The second one is a license plate identification application. The second application
needs a higher resolution than the first one. Thus the coefficient weight for the
resolution will be higher in the first application.

The trust model has three generic TFs:

Precision. This device-specific factor expresses the closeness of a reported measure-
ment to the value that a good sensor would give. Assuming that a majority
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of sensors behave correctly, we expect that neighbor sensors report similar
measurements. Thus, the good value can be estimated through a spatial cor-
relation method.

Availability. This device-specific factor takes into account the ratio of the number
of received reports to the total number of expected during an interval ∆t. Thus,
the availability score is defined as:

SAvailability(∆t) =
# reports received (∆t)

# reports expected (∆t)
(2)

Packet Error Rate (PER). This network-specific factor gives a quality estimate
of the communication channel between the sensor and the receiver gateway.
It takes into account the ratio of the number of erroneously received packets
to the total number of packets received in a time interval ∆t. Thus, the PER
score is defined as:

SPER(∆t) = 1− # bad packets received (∆t)

# total packets received (∆t)
(3)

This work will focus on creating the building blocks of a signature TF. The
signature corresponds to the shape the signal has. It depends on the context, i.e.
type of road (residential, main roads, secondary roads, etc.), in which the device
is deployed. Indeed devices belonging to the same context, even in different roads,
should provide data with matching signatures. This TF checks whether the signature
of the device respects the signature of its context. This TF involves data analysis
and machine learning techniques.

Before these techniques can be used, good quality data must be available. As
explained above, the data collected are raw data that have not been processed by a
trust model. They, therefore, suffer from an integrity problem. Given this problem,
we need to filter out bad data. The main problem is that the very definition of good
data is not clear. The only way to determine if the data is properly cleaned is to be
an expert in the field of urban acoustics. We, therefore, need to develop a method
to filter the data. We propose a filter solution using a Fourier Transform (FT) to
filter the data that does not have a daily frequency. Once the data has been cleaned
up, we can move on to the second step, which is to answer the questions: what are
the contexts and how many are there ? We propose a solution that uses clustering
techniques to group devices that have similar behaviors.

The rest of the paper is structured as follows. The related work and other studies
on the subject will be presented in the state of the art part . Then, Section 1 presents
our solution to filter out bad data and discuss our results. Section 2 presents the
solution we propose to group devices of the same context and our results. Finally,
we draw our conclusion and sketch some future developments in Section 2.2
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State of the art

On the side of filtering techniques, there exist anomaly detection techniques using
statistical analysis or machine learning. As this filtering problem is a very specific
problem, we believe that a solution adapted to the problem must be developed.

On the side of clustering techniques, recent studies show that applying clustering
techniques to noise time-series (TS) shows good results. The approaches diverge ac-
cording to the context and the use cases but they confirm that it is a good approach.
Studies such as ours are relatively recent given the recent advances in technology
that have allowed the IoT to emerge. Indeed it was complicated, for operational
reasons, a few years ago to deploy a large number of sensors. Prior to the emergence
in the early 2010’s of technologies such as LoRa, it was complicated to conserve
device batteries. Consequently, deploying 1000 devices meant that batteries had to
be changed regularly and thus drastically increased the maintenance costs of such
an infrastructure.

[6] reviews different approaches for TS clustering. Approaches are depicted and
compared with respect to the goal of the clustering. k-Means[7] and k-Medoids are
very fast compared to other clustering methods which makes them very suitable in
TS clustering.

In [8] a case study with similarities to ours was presented. In the city of Milan,
Italy, 58 data collection points were used to achieve 24-hour road noise patterns.
They used the K-means algorithm with euclidean distance on these 24h patterns to
group roads with similarities.

In [9] still in the city of Milan, They kept 35 data collection points and re-used
24-hour road noise patterns. It was proposed to use these 24h patterns to classify
roads by means of hierarchical clustering with Ward’s algorithm. Their purpose was
to compare whether the legal provisions in Italy regarding road type were really
adapted to the reality. They discovered that the patterns only partially correspond
to the legal road classification as this classification is mainly based on the geometrical
characteristics of the road, rather than its noise emission.
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Chapter 1

Filter

1.1 Methodology

The canton of Geneva, Switzerland, aims to reduce noise pollution. Thus, under
the direction of the cantonal environment office (OCEV), an analysis campaign was
launched to draw a noise map of the Carouge neighborhood. The service of air, noise,
and non-ionizing radiations (SABRA), an OCEV body, deployed in the city around
1000 devices equipped with noise sensors and thermometers in the city. These
devices communicate through the LoRa network deployed in the city of Geneva.

As shown in figure 1.1, devices are deployed along roads and the space between
neighboring devices is relatively small. We can also see that in some hot spots
different layers. These layers correspond to the level of the highest sensor. Layer 1
(blue) indicates that the devices are 3m above the ground. Layer 2 (green) indicates
that there is a sensor 6m above the ground in addition to the sensor in the lower
layer. Finally, layer 3 (yellow) indicates a sensor 9m above the ground in addition
to the lower layers.

As shown in figure 1.2, a device records a sample of the sound pressure level in
dB(A) every second for 15 minutes. Every 15 minutes, the device is supposed to
send a report consisting of several pieces of information:

Lmin: The minimum recorded level

Lmax: The maximum recorded level

Leq: The equivalent continuous recorded level also sometimes known as Average
Sound Level

L10, L50, L90, L95: the level exceeded for 10%, 50%, 90% and 95% of the period
(percentiles)
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Figure 1.1. City of Carouge’s noise sensor deployment

Figure 1.2. A 48-hours observation of one device’s output

Between 2018 and 2019 the devices collected data without a trust model being
integrated into the data pipeline. As SABRA found, this deployment of devices
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suffers from the problems described above such as problems related to data trans-
mission (lost data) and data integrity. In Figure 1.3a, we can see that the data
follow a pattern in which noise levels are low at night, rise in the morning, remain
high during rush hours, and then fall at the end of the day. As can be seen in figure
1.3b, there may be some missing data. These errors may occur either within a given
period or in isolated events. We can also see in figure 1.3c that the pattern of the
signal does not correspond to the pattern of the other days. In both cases, we do not
know what caused the device to send these data. Should the application trust the
data sent after a period without data? Should it trust data that doesn’t follow the
normal signal pattern? It was decided to apply the generic TM in order to answer
these questions and thus avoid drawing an imprecise map of noise levels.

The difficulty in making this filter is that there is no definition of accurate data.
Anomalies, which may come from several sources that are difficult to identify, make
the validation of the filter difficult. Indeed, only an expert in the field of urban
acoustics might be able to recognize noise levels representing reality. Since the
collection period is long enough (about a year) the amount of data is large enough
to allow the deletion of data. The main goal of this filter is to keep only good data.
We, therefore, decided that the filtering policy should be: When in doubt, filter
out. The application of this policy is as follows: if an anomaly is detected during
one day, the whole day is tagged as bad by the filter. In order to keep a stable
pattern, the data must not be affected by extreme values, we decided to discard the
Leq and Lmax levels. Indeed, as we can see in figure 1.2 Leq being an average, it can
be attracted by extreme values. This left Lmin, L10, L50, L90, L95. We chose Lmin

because it represents the minimum noise recorded by a sensor over the period. We
thus think that an anomaly would be more easily identifiable on this value. This is
why all the following analyses will be carried out on Lmin.

As shows figure 1.3a, a 24h pattern occurs since urban noise is mainly affected
by road noises[4]. Based on that observation an intuition was that anomalous data
would not fit this pattern. Our solution, therefore, turned to data analysis in order
to find this pattern and filter the data that did not respect this pattern. So we
decided to analyze the spectrum of the signal in order to characterize a good day.
In analyzing the data by weeks, we also found that the patterns were recurring from
day to day. i.e. the Mondays of a device have a pattern that is different from the
pattern of Tuesdays of the same device and so on. In figure 1.4, Saturdays and
Sundays clearly have different patterns that other days.

The filter answers the following question: Does this day matches a good day
pattern ?. In order to answer this question, he needs to know what a good day pattern
is, knowing that this definition could change depending on the day of the week. The
filter itself will deduce what this pattern is by using all the days it has at its disposal.
We will call this pattern the Reference TS (RTS) for a given day of the week and a
given device. To do this, he will artificially create a TS by concatenating the days.
given the TS S composed of noise levels samples Si belonging to days of the week
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(a) A 48-hours observation of one device’s output considered as accurate

(b) A 48-hours observation of one device’s
output with missing data

(c) A 48-hours observation of one device’s
output containing inaccurate data

Figure 1.3. Three common observable scenarios in TS
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Figure 1.4. A two weeks observation of one device’s output

{0, . . . , 6} (Monday to Sunday). There are 96 samples s per day (4samples/hour ∗ 24)
For the sake of mathematical simplicity, let’s say that the first sample of the TS S0

is the first sample (midnight) of a Monday so S96 is the first sample of Tuesday. The
function defining the RTS is the following:

Ref(SDevice, Day) = ∀i ∈ {0, . . . , |S| − 1}|Si ∈ ref ⇐⇒ (i÷ 96) mod 7 = Day

With Day ∈ {0, . . . , 6}
(1.1)

In other words, we take all the samples made on the given days and we compress
them like they’re consecutive. The resulting TS for Sunday is presented in figure
1.5

Figure 1.5. RTS for a given sensor and for Sundays

With the RTS we could now analyze the pattern with the Fast FT (FFT) al-
gorithm but the FFT algorithm is very sensitive to missing data. Missing data are
relatively frequent in the collected data as we can see in figure 1.3b. As stated above,
missing data occur either in a given period or in isolated events. For isolated missing
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Figure 1.6. Missing data interpolated with a linear interpolation method

data, it is not a problem because we can interpolate these samples without too much
information loss using linear interpolation. For missing data occurring in a period,
we can not interpolate as it would result in a loss of information. As shown in figure
1.6, interpolating too much missing data all at once leads to unrealistic results. The
goal here is not to Therefore instead of interpolating too much missing data at once,
we will place a first filter that will pre-filter the RTS. If more than 10 samples are
missing in a day, the day is tagged as bad by the filter and it will be removed from
the RTS. The aim is not to search for the best interpolation method. Such a search
would be costly in time and energy. This is why the above-mentioned policy must be
applied: when in doubt, filter out. Now that the RTS has been sanitized from any
missing data, we can apply the FFT. We will call the FFT applied on the RTS the
Reference FT (RFT). As shows figure 1.7, the highest peak in the RFT represents
the 24h period.

Now that the RFT is set we can compare each day with it. We will use the
same process as the reference. We are going to apply a FFT on a day that we want
to compare with the RFT. In order to be able to compare two Fourier transforms,
the number of samples composing them must be equal. Our example in figure
1.5 is composed of 18 days. Each day is composed of 96 samples, it is composed
of 18 ∗ 96 = 1728 samples. Comparing a single day with the RFT without pre-
processing is impossible because 96 6= 1728. We thus need a solution to compare
one day with the reference. The solution is to duplicate the TS of one day according
to the number of days composing the reference. In the case of our example in figure
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Figure 1.7. Example of RFT, resulting from the FFT algorithm applied on the
RTS in figure 1.5

Note: For sake of representation, frequency zero (F0) has been artificially set to
zero since it represents the average power of the signal

1.5, there are 18 days, so the compared day will be replicated 18 times. The resulting
TS is in figure 1.8b. With this TS that matches the size of the RTS, we can apply
the FFT algorithm on it and get a FT that matches the size of the RFT.
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(a) TS of the compared day

(b) Compared TS built with the compared day replicated to fit the RTS size

(c) FT of the compared day replicated TS

Note: For sake of representation, frequency zero (F0) has been artific0ially set to
zero since it represents the average power of the signal

Figure 1.8. Example of compared TS, with a given day replicated to fit the size
of the RTS and then its FT.
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As we can see in figure 1.8c, the first peak is also present and is the highest. We
can also see that the consequence of compared day TS replication is that the noise
is no longer randomly distributed and has been amplified. Now that these two are
calculated, we can compare them.

Figure 1.9. Comparison between RFT (blue line) and compared FT (orange dots)
Note: For sake of representation, frequency zero (F0) has been artificially set to

zero since it represents the average power of the signal

In figure 1.9, the dots represent the power level for each frequency. This graph
aims to highlight the differences between the peaks of the two FT. Although this
visual representation shows the differences between the two FT, we need a method
to quantify the error between the RFT and the compared FT. There are different
options available to quantify this difference. Our choice turned to the Mean Squared
Error (MSE). Its formula is the following:

MSE(Y ) =
1

n

n∑
i=1

(Yi − Ŷi)
2. (1.2)

The advantage of the MSE is that it will penalize large differences as it squares
them. Our goal is to filter out days that do not have a daily pattern. So we will
only consider the first peaks (with F0) that correspond to low frequencies. The
number of peaks we will consider is a parameter of the filter. It can, therefore,
be modified to consider more peaks or fewer peaks. Currently, the filter considers
the first 10 peaks. Now that we have a measure quantifying the difference between
RFT and a compared FT, we can apply this procedure to each day composing the
reference in order to get their MSE.
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(a) MSE of each day of the reference rep-
resented along an axis

(b) figure 1.10a seen as a statistical distri-
bution

Figure 1.10. MSEs viewed along an axis and as a distribution

Once all the MSEs have been computed, we can compare them and decide what
is the tolerated error. As shows figure 1.10a, we have several days that are more or
less far from the reference. Therefore we have to decide at what point we consider
the day to be bad. We can consider this set of MSEs as a statistical distribution. In
statistics, outlier detection is a common task. We will thus apply an outlier detection
technique in order to automatically define a tolerance threshold. The chosen outlier
detection technique chosen is Tukey’s boxplot. This technique can be represented
visually by the graph of the same name. It calculates the first (Q1) and third (Q3)
quartile of the distribution and then calculates the space between these 2 quartiles
(IQR). A day is then considered as an outlier if its MSE > Q3+1.5∗IQR. Outliers
are then considered as bad days.
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Figure 1.11. Boxplot of the distribution in figure 1.10

Finally, the filtering procedure can be summarized as follows:

Data: Device’s time-series, A day to filter {0, . . . , 6}
Result: List of good and bad days
extract the RTS from the device’s TS
Filter out days without enough samples
compute the RFT
foreach day in the RTS do

Extract the day of the RTS
Replicate the day signal along time so it has the same amount of
samples as the RTS

Compute the compared FT of the replicated signal
Compute the MSE between the RFT and the compared FT

end
Compute the error threshold
foreach day in the RTS do

if MSEday <= threshold then
Add the day to the good day list

end
else

Add the day to the bad day list
end

end
return good day and bad day lists

Algorithm 1: Filter procedure
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1.2 Discussion

As explained in the methodology section, the difficulty in making this filter is that
there is no definition of accurate data. According to the information sent to us by
SABRA, we had to make several assumptions. These assumptions were as follows:
The good data showed a 24-hour pattern and the majority of the data from one
sensor was good.

As the definition of ”good data” is not clearly defined, it is not possible to
quantify the quality of the filter. Only domain experts can validate the quality of
the filter by analyzing its results. Therefore, a tool is needed to be able to visualize
the data in order to decide if a bad day is not filtered out by the filter. Indeed, with
no less than 550 sensors filtered over a period of about 1 year, the amount of data
is too large for the filter results to be manually analyzed one by one. In order to
facilitate validation work by experts in the field, a Representational State Transfer
(REST) Application Programming Interface (API) has been developed. This API
makes it easy to request the filtering of the days of a given sensor. With this API,
a web interface for data visualization has been set up. The web app calls the REST
API This web app allows us to choose a device on the map and display good and
bad days on a calendar using green and red colors for respectively good and bad
days. The user can then choose a day and get insights information about the filter
like its FT and MSE.

Unfortunately, due to the large volume of data, the filter has not yet been val-
idated but the first results are promising and seem to validate the general filtering
method. In the case of inaccuracies, several parameters that allow us to act on the
filter can be modified according to the type of inaccuracies. In case the unfiltered
days do not respect the daily pattern, we can act on the number of peaks to consider
and increase or reduce it. In case the filter is too tolerant, i.e. the outlier definition
is too lax, we can replace the outlier detection method to apply a more severe one,
such as isolation forest for example, in order to filter more strictly. Finally, if the
error calculation does not suit our needs, the error calculation method can also be
replaced by the Mean Absolute Error (MAE).
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Chapter 2

Clustering

2.1 Methodology

Now that we have filtered data, we can analyze it. Thanks to the REST API,
we have a data pipeline that allows us to collect data and filter it easily with a
simple call to an API route. With these filtered data we will now be able to extract
signatures not polluted. With these sensor-specific signatures, we will attempt to
group signatures that are close together in order to understand the factors causing
their proximity.

The definition of a sound signature is not precise. Any component that helps
characterizes the sound can be considered part of the signature. Applying this to
our noise TS, several components might make up the signature. Following the work
done in [8], in which they performed a similar task and used 24-hour patterns, we
thought this would be a good starting point. Since we have a large amount of data,
we need to figure out a way to get a 24-hour pattern representing a sensor. One
possible technique would be to average each hour and thus have an average level for
each hour of the sensor. This would be equivalent to calculating the average level
of all samples at 00:00, then all samples at 00:15 and so on until 23:45. The result
would be 96 averaged levels which would, therefore, represent a TS of an average
day as shown in figure 2.1.
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Figure 2.1. Hourly averaged levels representing a 24h pattern

This starting point presents a major problem. As indicated in 1 each day of
the week has its pattern. This observation is especially true for the weekend days.
We, therefore, decided to take these differences into account by including the day
in the averages. Instead of averaging all the samples of a given hour, we calculate
the average of all the samples at a given time on a given day. The first average
level would then be Monday at 00:00, then Monday at 00:15 and so on until Sunday
23:45. The resulting time-series, presented in figure 2.2, would then be composed of
96 ∗ 7 = 672 averaged levels.

Figure 2.2. TS representing the signature of a device
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This TS presented in 2.2 is the signature of a device. This signature will be
used in a clustering algorithm to group common signatures. As presented in section
, globally the K-means algorithm is particularly adapted to TS. Moreover, it has
already been used to solve a problem similar to ours and presented good results. We
will, therefore, use the K-means algorithm to group the signatures. This algorithm
is known as a machine learning algorithm belonging to the unsupervised learning
branch. The result of these algorithms is called a model. The K-means algorithm
sees data as a vector space. Thus each device will be defined by a signature which
will be defined by a vector of dimension 672. Since we have a total of N = 551
devices, our dataset will be composed of 551 vectors and each vector will have a
dimension of 672. Each cluster is then defined by a vector defining the center of
the cluster. These vectors are called centroids. Each vector belongs to its nearest
centroid.

One of the constraints of the algorithm is that the value of K must be defined.
This value corresponds to the number of clusters that will be created, i.e. the
number of distinct groups at the end of the execution of the algorithm. Fortunately,
it is possible to run the algorithm several times while varying the value of K. It is
then possible to compare the results of the different K values using a metric. This
metric is the final cost function. During training, the k-means algorithm tries to
minimize a function called distortion. this function is defined as the sum of the
squared distances between each vector and its closest centroid. In other words, the
closer the vectors are to their centroids, the smaller the sum of the squared distances,
and the better the centroids are positioned. It is therefore logical that by adding
clusters the distortion decreases until it reaches K = N ⇒ distortion = 0. Using
the heuristic of the elbow or the knee of a curve, which tells us when adding clusters
is no longer worth the reduction in distortion, we can determine what is the best K
or at least between which bounds the best K might be located.

In order to find the best K, we ran the K-means clustering training algorithm
several times, varying K from 1 to 10. Since the algorithm is not deterministic, it
may not find the global minimum of the cost function but a local minimum. To
solve this problem, the algorithm was run 10 times for each value of K and the best
model was chosen. the distortion measure presented is therefore that of the result
of the best model for a given K. As illustrated in figure 2.3, we can see that there
is no ”knee of the curve” but rather a reduction in the slope of the curve between
4 and 6. For information, SABRA had estimated that this value of K would be
between 4 and 8.
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Figure 2.3. Distortion as a function of the number of clusters

2.2 Discussion

Since centroids are vectors, they also are a TS. Therefore we can visualize centroids
in the same way as signatures. Figure 2.4 shows centroids for each values of K.
In order to facilitate understanding, when we talk about a cluster, we will use the
following notation: CK

i , designating the cluster i belonging to the model composed
of K clusters. For example C4

0 refers to cluster 0 of the first graph where K = 4. As
shown in the first graph, in which K = 4, the levels are distinct during the daytime,
and then 2 levels are distinguished at night-time. When adding the fifth cluster, we
can find out that something strange is happening. The new C5

1 cluster is located
between clusters C4

0 and C4
3 . In reality, the C4

0 and C4
3 clusters no longer exist in

C5. They split into C5
0 and C5

2 to make room for C5
1 . This cluster has relatively

average levels during the day but they are particularly high at night. We will see
later that these night levels have a very rational explanation. Finally adding the
sixth cluster creates the last one that has very low levels at daytime and night-time.
Taking these findings into account, we chose to select K = 6.
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Figure 2.4. Centroids of clusters for K ∈ {4, 5, 6}

It is hard to understand how clusters interact with each other. We can see
general behaviors of the different clusters but this information is not sufficient to
understand how clusters are distributed geographically. Since noise is a propagating
wave, adjacent devices should record highly correlated data. These highly correlated
data should in return be classified in the same clusters. The intuition would then
be that this correlation could be found by displaying the devices on a map.

As the map in figure 2.5 shows us, our initial intuition is quite valid. The first
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Figure 2.5. Devices according to the cluster to which they are associated placed
on the Carouge map

observation we can make is that the cluster C6
1 is only present around the Arve

river. Indeed, the constant flow of water has a non-negligible impact, especially at
night. During the day, since water noise is less noisy than road-noise, road noise
increases the general sound level. which means the signal keeps a 24-hour pattern.
We, therefore, believe that this cluster is a special case for devices close to a river.
It also tells us that the type of road plays a big role in the measurements during the
day but that at night other parameters can have more impact because road noise
is much less impacting. This finding brings us new perspectives for future work. It
would be wise to consider a daytime context and a night-time context. An example
would be a street that hosts nightlife spots would have a normal daytime context
but a much noisier nighttime context than others.

As we can also see, along the main access roads to the city of Carouge, the
devices belong either to C6

0 or C6
4 which corresponds to the highest levels during

the day. Devices on boulevards are also associated with C6
4 . These cluster changes

and therefore average levels are probably due to changes in speed limits along these
major axes which therefore have an impact on levels along the same axis. It would
be interesting to compare these clusters with the speed limits in these streets. The
secondary roads are globally part of the C6

2 cluster. We find these devices in the
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heart of the city where the speed is often limited to 50Km/h. Finally, the devices on
very quiet residential roads are associated with the C6

5 cluster. These are often one-
way roads, two-way roads but where only one vehicle can pass at a time. Moreover,
these roads are often limited to 30Km/h. Finally the last cluster C6

3 is the strangest.
we can’t get any information on the geographic location of this cluster. It is also
the least represented. Indeed, only 16 devices are associated with this cluster. On
the other hand, there is such a difference between the levels of this cluster and the
others that we think it does have its context. It could be that this cluster is a cluster
of defective devices. The identification of this context and therefore the reason why
these devices collect this data is one of the tracks to be explored in future work in
order to better understand the interactions of noise in a small town like Carouge.
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Conclusion

Road traffic is the main source of environmental noise. As it is the main source of
environmental noise, people living in urban areas are much more exposed to these
health risks. According to United Nations (UN)’s 2018 revision of world urbanization
prospects [1], in 2018 the percentage of the world’s population living in urban areas
was 56%. By 2050, this percentage will be 68%. In order to reduce noise exposure,
it is first necessary to understand how noise propagates in cities.

That’s the project the cantonal environment office (OCEV) is undertaking.
Through service of air, noise, and non-ionizing radiations (SABRA) they have de-
ployed several hundred devices in the city of Carouge in the canton of Geneva in
Switzerland. However, this deployment suffers from several problems related to the
heavy constraints to which these sensors are subjected. The environment in which
they are deployed makes them vulnerable to weather conditions, tampering, etc. We
thus have a data integrity problem with the data collected that we need to resolve.
The proposed solution is to use the trust model (TM) proposed by [2]. The purpose
of this work is to develop the first building blocks of a signature trust factor (TF).
La signature d’un capteur correspond au contexte dans lequel il est déployé (axe
principal, route secondaire, etc). Pendant plusieurs mois les appareils déployés ont
collectés des données brutes.

In the first phase, it was necessary to filter out the data that lacked integrity. As
the meaning of ”correct data” is not clearly defined, only an expert in the field can
validate whether or not the filter does indeed eliminate incorrect data. However,
our filter is based on the assumption that the majority of the data are correct. We
decided to filter the data by blocks of 24 hours. We can then speak of a correct
or incorrect day. We then use those 24-hour blocks to calculate a reference Fourier
Transform (FT) that we can compare to individual days FT.

In a second step, we clustered the sensor signatures using a clustering algorithm
to create context-specific signatures. The signatures are composed of the average
levels over a week. We have therefore created 6 different clusters, each with its
context. As we thought, these contexts are strongly related to the types of roads and
other parameters that can have a significant impact in some cases. In future work,
we could consider considering night and day contexts in order to better characterize
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night behaviors. We could also try to better understand why some devices are
classified in clusters that do not at first glance correspond to their contexts. This
kind of analysis requires a great knowledge of the context of the city of Carouge and
its geography. Unfortunately, this kind of information is not collected by sensors.
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