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ABSTRACT

The commodities trading industry has indeed witnessed substantial growth
and undergone significant transformations in recent years. Vessel tracking has
emerged as a critical tool for companies involved in commodity trading, ensuring
the timely and precise delivery of goods to their intended destinations. To
address these issues, Dnext, a specialized startup in the agricultural financial
market, has developed a vessel destination forecasting system.

This report introduces the improvements in the Dnext’s solution including
lineup generation, vessel tracking, and the development of a machine learning
model for destination prediction.

To significantly reduce execution time from hours to minutes, the lineup
generation process was optimized by incorporating lineups from Argentina and
the United States while resolving duplicated information. Vessel tracking en-
hancements included improved stop detection and labeling, support for regions
with low GPS density, and reduced tracking failures.

The vessel destination forecasting methodology exploited voyage informa-
tion from tracking results, employing machine learning algorithms to enhance
predictions based on AIS data and lineups. The results demonstrated progres-
sive improvements in accuracy and average probabilities.

This work contributes to improving the accuracy of information used for
market analysis and provides insights into shipping movements through the
combination of different data sources and processing methodologies.

Keywords: AIS, lineups, GPS, Machine Learning, Destination Forecasting
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GENERAL INTRODUCTION

The commodities trading industry has experienced significant changes and
growth in recent years, driven by globalization, technological advancements,
and the increasing demand for commodities. The commodity trading revenue
has tripled from 36 billion in 2018 to more than 100 billion USD in 2022 and the
Agricultural and food products have increased by 45% in 2022 [2]. It is becoming
more interesting to see how maritime transport facilitates the movement of
goods across oceans and continents.

As a result, vessel tracking has become an important tool for those involved
in the commodity trading industry. It allows companies to track their cargo
and ensure it arrives at the correct destination on time.

Vessel tracking relies on two inputs: Automatic Identification System (AIS)
[15] data and the lineups [1]. AIS is a tracking system that exchanges real-time
information, including Global Positioning System (GPS) coordinates, between
vessels and shore-based stations. The lineups are a formal representation of the
vessel trips. A lineup is related to a given country and contains information such
as the arrival and departure times from that country, as well as the destination.
It’s worth reminding that stakeholders do not have access to all country lineups
and that not all information provided may be correct due to factors such as
incomplete data, human error, or deliberate misinformation. For example, due
to geopolitical reasons, shippers tend to provide false information about the
vessel destination, especially when there are tensions between countries such as
the USA and Iran or Australia and China.

In addition, some vessels tend to stop the GPS tracking system to offload
goods to countries other than the stated destination, which can result in incor-
rect estimates of transported quantities of commodities for each country. There-
fore, creating a machine learning model to predict the destination of vessels
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using GPS coordinates and lineups is paramount for the trading and commerce
industry.

In this context, Dnext, a Swiss startup based in Geneva, specializes in the
agricultural financial market and operates across three main areas. In the short-
term, they focus on determining the daily price index of transported commodi-
ties. In the mid-term, their work revolves around vessel tracking to estimate the
import and export of commodities for each country. Lastly, they engage in crop
modeling, which aims to predict commodity production annually by considering
factors such as weather conditions and other relevant factors.

Dnext is currently developing a vessel destination forecasting system to pre-
dict the most probables destinations for a vessel based on it’s current position
and the transported commodities. The proposed solution is decomposed into
3 steps. The first step is Dnext Lineup generation, which is developed using
Pandas libraries [17]. This step involves verifying the information provided by
each source. The goal is to confirm whether the vessel was near the announced
port during the stated arrival and departure times. The second step is vessel
tracking. By using Pandas libraries [17], this step involves using the GPS coor-
dinates and Dnext lineup to monitor the vessel and determine if the announced
destination is accurate. This allows us to generate a list of confirmed voyages
to be used in the final step, which is vessel destination forecasting. In this step,
we investigate several machine-learning algorithms to predict the most proba-
ble vessel’s destinations based on the transported commodity and the current
position of the vessel, without taking into consideration the trajectory.

Existing approaches, such the approach described by Calabrese et al., 2018
[4] , Zhang et al., 2020 [18] and Magnussen, B. B. et al. in 2021 [12] in the
literature, have certain limitations, including geographical specificity, computa-
tional complexity, or the omission of crucial parameters such as the transported
product. Thus, the Dnext forecasting system aims to address these challenges
and provide an improved solution in the field of vessel destination prediction.

This report is organized as follows: The first chapter provides an overview
of the state of the art of vessel destination forecasting. We will introduce the
global vessel tracking terminology and the implemented algorithms in the liter-
ature for vessel destination forecasting and it’s limitation. Following that, the
second chapter delves into the Dnext workflow, outlining the three main steps
for implementing vessel destination forecasting. Next, in the third chapter, we
detail the implementation process and present the obtained results. Finally, we
conclude the report by summarizing the findings and discussing potential future
perspectives for this work.
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CHAPTER 1

VESSEL DESTINATION FORECASTING: STATE
OF THE ART AND BACKGROUND CONTEXT

1.1 Introduction

This chapter offers an overview of prior research conducted in the field, with a
specific focus on algorithms employed for precise vessel destination estimation.
Firstly, we will introduce the terminology related to global vessel tracking, in-
cluding the Automatic Identification System (AIS) and lineups. We will delve
into the fundamental concepts utilized in previous studies for constructing his-
torical trajectories. Next, we will explore various algorithms implemented for
vessel destination forecasting. Finally, we will present the problematic of our
project.

1.2 Global vessel tracking:

1.2.1 The Automatic Identification System and Lineups:

In this section, we will begin by defining the Automatic Identification System
(AIS) and discussing vessel lineups. Following that, we will delve into the rep-
resentation of historical trajectories.

1.2.1.1 The Automatic Identification System:

The AIS is a communication system used in maritime navigation safety. It
operates through VHF radio transmissions to provide vessel traffic information,
including identity, position, course, and speed, to nearby ships and shore-side
traffic monitoring centers. The goal of AIS is to enhance collision avoidance and
overall maritime safety.
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Ships and shore-based facilities, such as Vessel Traffic Service (VTS) centers,
are equipped with AIS transceivers. These transceivers periodically transmit the
ship’s position and other relevant information, which can be received by other
ships and VTS centers within range. This system enables coastal authorities
and ship crews to visualize the positions and movements of nearby vessels.

AIS also facilitates the collection of historical positional data about vessels.
Several service providers offer this data, which includes vessel identification,
location, speed, course, and draught. The draught of a vessel refers to the
vertical distance between the waterline and the bottom of the hull, indicating
the depth of the vessel in the water. A heavier load leads to a greater draught.

It is important to note that not all dynamic attributes reported through AIS
are automatically recorded by the vessel’s sensors. Certain information, such
as GPS position, position timestamp, speed, course, and heading, are reported
automatically. However, the navigation status (at anchor, moored, underway)
and draught are manually inputted by the vessel’s crew.

1.2.1.2 Lineups

A vessel lineup (Figure 1.1) record typically refers to a comprehensive set of
information related to a specific vessel, maintained and updated by a regulatory
agency or other relevant authority. The vessel lineups provide the information
described below:

• vessel’s identification includes the vessel name, the International Maritime
Organization (IMO) number, and the type.

• Arrival port

• Arrival time (announced or estimated) at the arrival port

• The announced destination countries

• Departure time (announced or estimated) to the destination port

• Crop commodity: the transported crop commodity

• The quantity of the transported crop commodity.

The record is typically compiled by the port authority, terminal operator, or
shipping agent, and then shared with various stakeholders, including the ship’s
crew, terminal workers, and other relevant parties. It fulfills several crucial
functions for the port or terminal, including facilitating the planning and coor-
dination of ship movements, optimizing cargo handling processes, and efficiently
allocating equipment resources. Moreover, it plays a vital role in guaranteeing
that the appropriate vessel is present at the designated berth at the specified
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time, while also ensuring the availability of necessary resources to effectively
manage both the vessel and its cargo.

Figure 1.1: Vessel Lineups, Ukraine [1]

1.2.2 Historical Trajectories representation using AIS data:

Now, let’s shift our focus to the presentation of historical trajectories after
delving into the definition of AIS and vessel lineups. We will examine three pos-
sible approaches for this purpose: the spatial grid method, graph representation,
and computation of trajectory similarities.

The grid methodology (Figure 1.2) involves dividing the sea into a grid, where
each cell covers a non-overlapping area. Within each grid cell, all GPS coordi-
nates are consolidated into a single point.
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Figure 1.2: Vessel Trajectory Representation Using Grid Approach

Alternatively, the graph theory approach (Figure 1.3) suggests using stop
points, which indicate whether a vessel is stationary or moving slowly, as nodes.
These nodes are then connected by edges that represent the vessel trajectories.

Figure 1.3: Vessel Trajectory Representation Using graph Approach

The grid representation offers more flexibility compared to the graph rep-
resentation since we can easily add new trajectories to our database without
re-implementing the model. However, using the grid representation comes at
the cost of losing important information such as the transported commodities,
their quantities, and the vessel speed. Additionally, the size of the grid can
impact destination forecasting, making it more suitable for covering small ar-
eas rather than the entire expanse of the Earth’s seas. On the other hand,
the graph representation requires defining nodes, edges, and weights, which al-
lows for incorporating relevant information. However, implementing the graph
representation is more complex and depends on the variabilities of ship routes.
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To address the challenges mentioned above, the third solution proposes gen-
erating a distance matrix that captures the similarities between each pair of tra-
jectories. However, this solution may require significant computational power
when the number of trips is high, and it involves reducing the number of points
in a curve while preserving its overall shape as much as possible.

1.3 Vessel Destination Forecasting: ML based
forecasting approaches

After exploring various methods of representing historical trajectories, which
is a crucial step in data processing, providing valuable information that enhances
the accuracy and effectiveness of destination forecasting, we can now shift our
focus to the techniques employed in previous studies for destination forecasting.
As mentioned earlier, there are three approaches to presenting the historical
trajectories.

The first approach, proposed by Calabrese et al., 2018 [4], involve using grid-
based system to map GPS coordinates to waypoints and a set of Markov chains
to estimate the most likely destination ports of ships sailing the Mediterranean
Sea. Markov chains are stochastic models that take past events into account
when making predictions. In this case, they are used to analyze ship move-
ments and predict possible destination ports based on the current ship state
and previous events. To improve prediction accuracy, the method monitors
vessel characteristics such as draft, speed, and frequently visited ports. Refine-
ment of ship classification based on these features improves prediction accuracy.
Thus, this method can accurately predict the destination port of a ship in real
time even in the face of a large event streams.

The second approach, presented by Magnussen, B. B. et al. in 2021 [12], uti-
lized a graph-based solution to represent global tanker maritime traffic. Port-to-
port trajectories are discretized into sequences as training data for a recurrent
neural network (RNN) model developed for port and region-scale object pre-
diction. The RNN model used is a sequence-to-one model, including an input
layer and an embedding layer, responsible for encoding various features such
as draught value and departure times. Additionally, it includes a dense output
layer with softmax activation. The authors experimented with different net-
work architecture variants, one of which included an Long Short Term Memory
(LSTM layer). To counteract overfitting, the authors used dropout technique
so the model can generalize better and improve the capacity representation of
the model. Furthermore, after combining sequential branches with constant
features, batch normalization is applied to ensure more stable model training.

For the third option, which consist of similarities measurements, Zhang et al.,
2020 [18] proposed a new approach to vessel destination prediction using a gen-

7



eral AIS data-driven model. The proposed method involves three main steps.
First, the historical trajectory database is built using the DBSCAN cluster-
ing process. The clustering process groups similar trajectories together, which
helps to identify patterns and trends in the data. Second, the Random Forest
method is used to measure the similarities between the historical trajectories
and the new vessel trajectories. It is used to identify the most important fea-
tures that contribute to the similarity between the trajectories. Finally, the
”port frequency-based decision strategy” PFD-based approach is used to nor-
malize the similarities and predict the destination. The PFD-based approach
considers the port frequency to predict the destination, which is a more accurate
and reliable method than existing approaches. The port frequency reflects the
popularity and importance of each port, which can help to identify the most
likely destination for a vessel.

In summary, our exploration has encompassed different algorithms utilized
in previous research for the representation of historical trajectories and the
forecasting of vessel destinations. These algorithms include the grid approach
with Markov chains, the graph-based solution employing RNN models, and the
method of measuring similarities using DBSCAN and Random Forest. Moving
forward, we will now introduce the problematic of our project: vessel destination
forecasting.

1.4 Project Problematic:

The reliance on vessel tracking for monitoring agricultural commodity trans-
portation introduces certain challenges. Vessel tracking is based on two main
inputs: AIS data, which includes GPS coordinates, and lineups, which repre-
sent formal representations of vessel trips. However, there are limitations and
potential inaccuracies in these inputs that stakeholders should be aware of.

Firstly, not all country lineups are accessible to stakeholders, limiting their
access to comprehensive information. Additionally, the provided information
may not always be accurate due to factors such as incomplete data, human error,
or deliberate misinformation. Geopolitical tensions between countries, like the
USA and Iran or Australia and China, can lead to governments providing false
information about vessel destinations.

Furthermore, some vessels intentionally turn off their GPS tracking systems to
offload goods in countries other than their stated destination. This practice can
lead to incorrect estimates of the quantities of commodities being transported to
each country. These discrepancies in vessel destinations and transported quan-
tities can have significant implications for traders and the commerce industry.

To address these challenges, the development of a machine learning model
becomes crucial. Creating a predictive model that utilizes GPS coordinates and
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lineups information lineup information, such as the transported commodities,
can help accurately determine the destination of vessels. By leveraging machine
learning techniques, stakeholders can overcome the limitations of traditional
vessel tracking methods and obtain more reliable and precise information about
the movement of agricultural commodities.

Implementing such a model has the potential to enhance decision-making in
the trading and commerce industry. It would enable stakeholders to anticipate
vessel destinations, identify potential discrepancies or deviations from the stated
information, and make informed decisions regarding trading volumes, pricing,
and logistics planning.

In the previous section, the mentioned methods have limitations, including
geographic features, computational complexity, or lack of key parameters (such
as commodities being transported). the first proposed solution is specific to the
Mediterranean Sea, which may not be applicable to our case as we require an
algorithm able to predict destinations in oceans worldwide. The second pro-
posed solution is complex and demands significant computational resources for
implementation due to the extensive parameter tuning involved in the encoder
and decoder architecture. Additionally, the third solution lacks consideration
for crucial parameters such as transported products and other relevant factors.
The main goal of our work is to predict the most likely destinations, we will only
focus on the couturiers level and not the ports in the area, our predictions should
evolve with voyage progresses. Predictions are based on the current position of
the ship and the cargo being transported.

In summary, vessel tracking for agricultural commodity transportation faces
challenges related to incomplete or inaccurate data, deliberate misinformation,
and discrepancies in vessel destinations. Developing a machine learning model
that combines GPS coordinates and lineups can provide a more reliable and pre-
cise prediction of vessel destinations. This predictive capability would greatly
benefit the trading and commerce industry, facilitating more accurate decision-
making and reducing potential risks associated with the transportation of agri-
cultural commodities.

1.5 Conclusion:

In conclusion, this chapter provided an overview of previous research con-
ducted in the field, with a specific emphasis on the algorithms utilized for accu-
rate estimation of vessel destinations. Firstly, the terminology related to global
vessel tracking, such as the Automatic Identification System (AIS) and lineups,
was introduced and explained. The fundamental concepts employed in previous
works for constructing historical trajectories were discussed in detail. Subse-
quently, various algorithms implemented for vessel destination forecasting were
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examined. Finally, the project problematic was presented, highlighting the key
challenges and objectives to be addressed in our project.

In the upcoming chapter, we will introduce the Dnext solution for adapted
Vessel Destination Forecasting, along with the proposed workflow.
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CHAPTER 2

DNEXT SOLUTION FOR ADAPTED VESSEL
DESTINATION FORECASTING

2.1 Introduction

In this chapter, we will introduce Dnext, a Swiss startup in the agricultural
financial market. We will then explore the Dnext workflow, covering lineup
generation, vessel tracking, and vessel destination forecasting. This chapter
provides an overview of Dnext’s innovative approach to optimizing vessel oper-
ations and enhancing supply chain efficiency.

2.2 Dnext: Startup Presentation

Dnext is a comprehensive commodity data platform that gathers data from
dispersed public and private databases for the agricultural market data. How-
ever, the Dnext’s mission extends beyond data provision alone. Dnext leverage
the potential of data science to create innovative analytical features, elevat-
ing forecasting and data sharing capabilities within agricultural companies and
across the industry.

For the customers in the agricultural market, Dnext offers significant ben-
efits. They gain access to a complete view of the market, incorporating data
from multiple sources, with a strong emphasis on data quality. This comprehen-
sive perspective empowers them to make informed decisions and stay ahead of
market trends. Moreover, Dnext’s platform supports effective data governance,
enabling precise management of collected agricultural data and controlling ac-
cess permissions.
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Transparency is a key aspect of Dnext, ensuring that agricultural market par-
ticipants have clear visibility into the data sources and processes. This fosters
trust and allows for improved collaboration within the industry. By breaking
down organizational silos and facilitating data sharing, Dnext enhances decision-
making processes and promotes collaboration among agricultural traders, pro-
ducers, and other stakeholders.

In summary, Dnext serves as a powerful platform for the agricultural market,
collecting and analyzing dispersed data sources to provide actionable insights.
With its unique analytical features, data quality guarantees, and collaborative
capabilities, Dnext empowers agricultural businesses to thrive in an increasingly
data-driven landscape.

2.3 Dnext Workflow:

As previously mentioned, the proposed solution (Figure 2.1) consists of three
steps. The first step involves generating the Dnext lineup by collecting data
from various lineups information sources and verifying the accuracy of the pro-
vided information on the arrival port, arrival time, and departure time from
the announced port. The results are consolidated to produce the Dnext lineup.
The second step involves vessel tracking, where the generated Dnext lineup and
GPS coordinates serve as input to verify whether the vessel has voyaged to the
announced destination. Finally, several approaches based on machine learning
algorithms will be implemented in the last process to estimate the vessel desti-
nation. In the next sections, we will delve into the specifics of each of the three
steps.
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Figure 2.1: The vessel identification process

2.3.1 Dnext Lineup generation:

To generate the D-lineup, our first step involves verifying information pro-
vided by multiple sources and then consolidating the results. This verifica-
tion process known as vessel identification (Figure 2.1), is designed to confirm
whether a vessel was present at the specified port during the Estimated Time
of Arrival (ETA) - Estimated Time of Shipping (ETS). The vessel identification
process consists of two sub-processes: generating vessel candidates and verifying
their presence.

The first step in the vessel identification process (Figure 2.2) is to compare
the information provided in the lineups with the Dnext database. This is done
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using either the vessel name or IMO number. We select vessels with comparable
details to generate a list of candidates. If any vessel is unidentified within
Dnext’s database, we query the AIS using its IMO number to produce a list of
potential matches.

Once we have generated the candidate’s list, we query the AIS to retrieve the
GPS coordinates for each candidate. In order to implement the second step, we
need the list of ports with their defined area. This list is created by Dnext’s
team of experts since not all ports have the same span.

The verification process involves determining whether a vessel is within a
port’s proximity radius. This radius is defined as the area within which the
vessel is near the port. Therefore, we consider the vessel as identified when it
appears within the proximity radius, either during the ETA-ETS interval, as
well as shortly before or shortly after.

It’s important to note that there may be several potential matches for a single
vessel during this verification process. In such cases, we employ a process known
as fuzzing to determine the candidate with the highest fuzzing score between its
name and the name of the vessel being identified. If there are still duplications,
we use the vessel’s time of arrival and departure precision to break them. If
necessary, user intervention is also utilized to resolve any remaining conflicts.

The output of this process is the identified vessel, the unidentified vessel, and
a list of duplicated vessels that cannot be filtered with the fuzzy score.

Figure 2.2: The vessel identification process

The result of the vessel identification from different sources will be consoli-
dated to generate the D-lineup with more veracity and efficiency. By comparing
the identified vessels from multiple sources, we can increase the confidence level
of the D-lineup, which is the final output of our process.
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In summary, our vessel identification process is a critical step in verifying
whether a vessel was present at a specified port during a given time. The pro-
cess involves generating a list of candidates by comparing information provided
in the lineups with the Dnext database, querying the AIS to retrieve the GPS
coordinates for each candidate, and verifying the lineup’s information by deter-
mining whether a vessel is within a port’s proximity radius. The use of fuzzing,
vessel arrival and departure precision, and user intervention are employed to re-
solve any potential conflicts. The output of this process is the identified vessel,
the unidentified vessel, and a list of duplicated vessels that cannot be filtered
with the fuzzy score. Finally, the identified vessels from different sources are
consolidated to generate the D-lineup with increased veracity and efficiency.

2.3.2 Vessel tracking:

In the previous section, we discussed the Dnext lineup generation process
and how we ensure that the vessel was near the declared port during the ETA
and ETS. However, we didn’t mention anything about verifying the announced
destination in the lineup. To achieve this, we need to develop a process to
track the vessel and verify whether the information regarding the destination is
correct or not. This is the objective of the vessel tracking process (Figure 2.3),
which can be divided into two major subtasks: stop detection and determining
when the voyage has ended.

The vessel tracking process is based on the information provided by the Au-
tomatic Identification System (AIS). The AIS data represents a time series that
contains the GPS coordinates of the vessel, which are collected automatically
through the GPS system, as well as data that is entered manually by the vessel
personnel, such as the draught and navigation status.

The first subtask of the vessel tracking process is stop detection, which in-
volves detecting whether the vessel is in movement or not. We base our process
on the navigation status because the speed information is manually entered by
the vessel crew, and it may be erroneous. For each sequence of detected stop
points, we calculate the duration of the stop sequence. Based on the list of
ports provided by the Dnext experts, we calculate the distance between each
stop point and the ports to determine the nearest port. We then compare the
distance with a threshold entered by the user, and finally, we label the stops
based on the following categories:

• Primary stop points: these are the stop points that are considered as
primary when the vessel is too close to a port. We have defined two sub-
categories: loading ports and unloading ports. Loading ports are the stop
points where the value of the draught increases, while unloading ports are
the stop points where the value of the draught decreases.
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• Secondary stop points: these are the stop points that are considered as
secondary when the vessel is too far from a port, or when they are refueling
ports.

It is worth noting that some vessels tend to close the GPS system to offload
goods to countries other than the stated destination, especially when there are
tensions between countries such as the United States of America and Iran or
Australia and China. For this reason, we added a system to the stop detection
point process to detect if the vessel went through regions with low GPS density,
such as the Persian Gulf, Malaysia, and Vietnam. This zones have a high vessels
density causing data loss at satellites levels due to buffer capabilities.

After determining the stop points and verifying whether the vessel went
through regions with low GPS density, we delimit the voyage by detecting the
first stop point that matches the information provided by the lineup regarding
the port name, ETA, and ETS. This stop point is considered as a loading port,
and we check if the announced destination is one of the stop points with the
label of an unloading port.

Figure 2.3: The vessel tracking process

In summary, the vessel tracking process is an important step in the Vessel
destination forecasting. It involves two major subtasks: stop detection and de-
termining when the voyage has ended. The process is based on AIS data, which
contains GPS coordinates of the vessel, as well as data entered manually by
the vessel personnel. The stop detection subtask involves detecting whether the
vessel is in movement or not, and then labeling the stops based on their prox-
imity to ports. The delamination subtask involves verifying whether the vessel
went through regions with low GPS density and then verifying the announced
destination. Overall, the vessel tracking process ensures that the information
provided in the lineup is accurate and up-to-date, which is crucial for the suc-
cessful execution of the voyage.
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2.3.3 Vessel destination forecasting:

The next phase of the project involves forecasting the destination country
of vessels. This is a critical step in ensuring the accuracy of statistical models
used by DNEXT analysts to estimate the quantities of imported commodities
for each country. By monitoring the flow of vessels and accurately predicting
their destination, we can prevent biased information and ensure the reliability
of statistical models.

For example, consider the case of Thailand in 2020/2021, the imported quan-
tities of soybean meals is expected to increase by 2.75 million metric tons in
2021/2022 [14], transported using approximately 46 vessels. Even a small er-
ror in predicting the destination ports of these vessels, such as missing three
vessels, could result in a non-negligible error percentage of around 6.52%. This
highlights the importance of accurately forecasting vessel destinations to avoid
such errors.

In addition to estimating the quantities of imported commodities, forecasting
vessel destinations can also help verify the provided information in the line-
ups. shippers may provide false information about vessel destinations due to
geopolitical reasons, especially during periods of tension between countries. By
predicting vessel destinations and comparing them to the provided information,
DNEXT can verify the accuracy of the provided information.

To predict vessel destinations, several machine-learning algorithms will be
investigated in this phase .As stated in the preceding chapter, the goal of vessel
destination forecasting is to predict the most likely destinations throughout the
vessel’s voyage, with the prediction evolving as the voyage progresses.

In conclusion, forecasting vessel destinations is a critical step in ensuring the
accuracy of statistical models used by DNEXT analysts. This phase of the
project will focus on exploring different machine-learning algorithms to pre-
dict vessel destinations, verify provided information, estimate arrival times, and
answer customer queries. By doing so, we can provide reliable and accurate
information to DNEXT’s customers and ensure their satisfaction.

2.4 Conclusion:

In conclusion, this chapter has outlined Dnext’s proposed solution for ves-
sel destination forecasting, comprising three key steps: generating the Dnext
lineup, vessel tracking, and vessel destination forecasting. These steps collec-
tively contribute to enhancing the accuracy and reliability of the forecasting
process.
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The upcoming chapter will delve into the implementation details and present
the experimental results obtained from the application of Dnext’s solution.
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CHAPTER 3

IMPLEMENTATION AND EXPERIMENTAL
RESULTS

3.1 Introduction

In this chapter, we will discuss the practical implementation of the enhance-
ments introduced in the methodology chapter into the Dnext workflow, as well
as the experimental outcomes. We will begin by outlining the implementation
process of the Dnext lineup generation for Argentina and the United States of
America. Building on the insights gained from the previous results, we will then
proceed to the implementation of vessel tracking using the generated Argentina
and the United States D-lineups. Finally, we will present the implementation
of vessel destination forecasting for vessels departing from Argentina to other
countries around the world.

3.2 Dnext Lineup generation:

The Dnext lineup generation underwent four phases of testing. In the first
phase, we tested it with the Brazilian lineups. During this phase, we discovered
that there was a duplication in the information, which prompted us to add a
process that could detect and alert users about such duplication. This would
enable users to check and verify the correct information to keep.

In the second phase, we added the Argentina lineups to the process. However,
we encountered new challenges during this phase. Upon exploring the results,
we found that some vessels had changed their names. To address this issue,
we added a process that would enable users to make corrections regarding the
vessel’s name.
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Below is a table that describes the results of the Dnext Lineup generation for
Argentina before and after the improvements described above.

Source 1 Source 2 Source 3
Identified vessel 88.67% 93.54% 89.66%

unidentified vessel 11.33% 6.46% 10.34%

Table 3.1: Results of the Vessel identification process for the Argentina lineups
before improvements

Source 1 Source 2 Source 3
Identified vessel 97.45% 99.37% 92.65%

unidentified vessel 2.55% 0.63% 7.35%

Table 3.2: Results of the Vessel identification process for the Argentina lineups
after improvements

As we can see from the Figure 3.1, the unidentified vessels from source 3,
which represent 7.35% of the total number (Table 3.2), are vessels that are
estimated to arrive after March 2023. This is because we were working on
improving the D-lineup for Argentina in February, which led to vessels being
labeled as unidentified until the updated lineup source was implemented.

Figure 3.1: the distribution of the unidentified vessel (source 3)
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In the third step, we added the United States of America lineups to the
process. However, we encountered another challenge as some sources provided
information about trains and trucks that transport the commodities, which dis-
rupted the process. To address this issue, we added a filter and moved this
information to the unidentified vessel category. However, we still retained this
information as it is important when analyzing the transported commodities.
Additionally, we implemented a code that matches the ports to their respec-
tive regions and optimized the verification step to ensure accuracy, as the data
structure was not consistent across different sources.

After implementing the previous mentioned improvements and utilizing op-
timized functions provided by Pandas libraries, we were able to optimize the
solution and reduce the high execution time. During the optimization process,
we identified certain boat types, such as Tug and fishing boats, which had high
GPS density and required substantial resources to determine their proximity
to the port. By excluding these boat types from consideration, we successfully
reduced the execution time significantly and enhanced the overall efficiency of
the process.

After the improvements and the data management process, we obtained these
results regarding the execution time on the vessel identification process:

Execution time Brazil Argentina USA
Before improvements 2H 1:30H Broken
After improvements 20min 15min 10 min

Table 3.3: Execution Time Performance Results

After the vessel identification process, the data is compiled and consolidated
to generate more accurate D-lineups, which are utilized to track vessels and
ensure compliance with the announced destination declared in lineups. In the
following section, we will delve into the improvements applicated to the vessel
tracking process.

3.3 Vessel tracking:

Initially, the vessel tracking system underwent testing exclusively using the
Brazilian lineups. Subsequently, we expanded the scope of the process to in-
clude the Argentina and United States lineups. This expansion required us to
modify the implementation by incorporating the new version of the lineups and
introducing region support.

In the previous version of the vessel tracking process, we define only the pri-
mary stops which are the loading ports and unloading ports. After exploring
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the process, we figure that this configuration may introduce errors. For exam-
ple, the stop point is too far from the port and it’s considered as an unloading
port(Figure 3.2).Therefore, we need to define secondary stop points. As de-
scribed above a secondary stop point is a stop point where the vessel is too far
from a port, or when they are refueling ports.

Figure 3.2: Stop Point Labelling Challenge in Vessel Tracking

After adding secondary stop points, the performance of the tracking process
deteriorated, primarily because of issues with the stop detection process. To
address this, we needed to refine our selection of stop points. For instance
we previously considered the yellow point (Figure 3.3a) as an unloading port.
However, with the addition configuration, we labeled it as a secondary stop
instead. Consequently, we mistakenly assumed that the vessel did not dock at
the port in Morocco, which is not correct. To rectify this, we modified our
selection of stop points for each port based on their distance from the port
(Figure 3.3b).
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(a) Before adding secondary stop points

(b) After improving the stop detection and the labeling

Figure 3.3: Comparison of the stop detection and labeling before and after the
improvements

As previously stated, GPS coordinates of vessels can be lost in certain areas,
such as the Persian Gulf, Malaysia, and Vietnam, often due to political reasons.
To address this issue, we represented each region by circles and checked if the
vessel passed through them. We adopted an iterative approach, beginning with
the implementation of the process in the Persian Gulf, and proceeded to check
the results for each subsequent region until we covered them all. However, we
encountered an overlap problem in the Vietnam region, which required us to
switch from using circles to defining polygons. Following several tests, we have
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developed a generalized solution (Figure 3.4) that allows users to define these
regions.

Figure 3.4: Representation of Zones with Low GPS Density

Following these enhancements, the percentage of vessels with corrected de-
clared destinations in the lineups saw a notable improvement, rising from 59.7%
to 66.8%. We can also see that with the updated lineup, the percentage of un-
trackable vessels has decreased after defining the low GPS density zone detection
(Figure 3.5).
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Figure 3.5: Comparison of the untracked vessels distribution before and after
the improvements

In summary, we made several improvements to enhance the vessel tracking
process. These included updating the process with the latest version of line-
ups, enhancing the detection and labeling of stop points, and implementing a
mechanism to identify vessels that traveled to regions with low GPS density.

Moving forward, we will now delve into the vessel destination forecasting
process and discuss its implementation.

3.4 Vessel Destination Forecasting

As described in the previous chapters, the primary objective of the destination
forecast is to determine the most probable destinations based on the products,
origin, and GPS coordinates obtained from the AIS. It is essential for the forecast
to evolve as the voyage progresses. In this study, we will focus on the Argentina
lineup and utilize the results of the tracking process specifically for Argentina.

25



In order to achieve our goals in vessel destination forecasting, we adopted the
CRISP-DM (Cross-Industry Standard Process for Data Mining) approach (Fig-
ure 3.6), a widely recognized and proven methodology for data-driven projects.
This approach provides a structured framework that guides us through the var-
ious stages of the project, ensuring a systematic and efficient implementation
process.

Figure 3.6: Cross Industry Standard Process for Data Mining [16]

Let’s explore the different steps involved:

1. Business Understanding:

As described in previous chapters, the primary objective of our vessel
destination forecasting project is to estimate the quantities of imported
commodities for each country. Another important aspect is to verify the
information provided in the lineups and effectively address customer in-
quiries.

2. Data Understanding:

We have acquired vessel GPS coordinates from the AIS. Through the
Dnext lineup generation and vessel tracking process, we have constructed
voyages that capture the origin, start day, destinations, and arrival times.
The duration of voyages varies (Figure 3.7), ranging from one week to
more than ten weeks, depending on the destinations.
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Figure 3.7: Vessel Voyage Duration Distribution

3. Data Preparation:

During our exploration of different vessel voyages, we identified erroneous
GPS coordinates obtained from the AIS. These points were considered as
noise and subsequently removed from the dataset.
In addition, we filtered out vessels where GPS coordinates were lost for a
duration exceeding a predetermined threshold. For example, we observed
instances where vessels appeared to cross the African continent due to
missing GPS data for more than 15 days.

To ensure a seamless trajectory, we employed linear interpolation at a
minute-level granularity, assuming of a flat Earth surface. This approxi-
mation was justified by the close proximity of points within the designated
time.

4. Modeling:

In the Modeling phase, considering the objectives of vessel destination
forecasting and the prepared data, we opted to utilize the similarity mea-
surement approach outlined previously in Chapter 2. This approach in-
volves clustering trajectories using the DBSCAN algorithm, with a focus
on identifying similar characteristics using FastDTW and the Haversine
formula. Furthermore, we employed classification techniques utilizing XG-
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boost to accurately determine the most probable destinations, considering
the features the current vessel position, transported commodity, and clus-
ter ID.

The initial Implementation is Described in Algorithm 1:

Algorithm 1 :

1: Build the historical trajectories: Randomly select diverse vessel trajectories
to cover all destinations.

2: Compute the distance matrix and perform clustering: Calculate similarities
between trajectories and group them using clustering.

3: Split the historical trajectories into training and test datasets, then train
the classification model.

4: for each historical trajectory do
(a) Calculate similarities between the new trajectory and the current his-

torical trajectory.

(b) Predict the cluster ID.

(c) Determine the most probable destinations. The probabilities are de-
termined by the classifier model, which utilizes a decision tree-based
model.

5: end for

To build the historical trajectory, we aimed to preserve the same distri-
bution of voyage durations shown in Figure 3.7.

Figure 3.8: Historical trajectories Duration Distribution
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To facilitate the calculation of similarities, we applied an interpolation
technique using one-minute intervals to regenerate the original trajectory
shape by filling in missing GPS coordinates, considering the Earth’s sur-
face as a flat plane during these intervals. Subsequently, we reduced the
granularity to one hour when calculating similarities between trajectories.
This reduction in granularity strikes a balance between capturing vessel
movement patterns effectively and minimizing computational complexity.
By selecting points at one-hour intervals, we achieved accurate similarity
calculations while reducing the overall number of points and facilitating
efficient distance calculations.

In order to find the optimal ϵ parameter for DBSCAN, we applied the
elbow method using figures 3.9a and 3.9b. By analyzing the 5th neighbor
distances, we observed an elbow point around 8. Similarly, when consid-
ering the number of clusters per ϵ, the elbow was observed at an ϵ value of
6. Based on these findings, we determined that the optimal ϵ parameter
should be between 6 and 8. Consequently, we selected an ϵ value of 6,
resulting in a total of 52 clusters.

(a) Points sorted by distance to the 5th
nearest neighbor

(b) Number of clusters per ϵ

Figure 3.9: 5th neighbors’ distances and number of clusters per ϵ using
interpolation as pre-processing method and the Haversine distance

After the implementation, we observed that Algorithm 1 demanded signif-
icant computational resources because each time we need to calculate the
difference between the new trajectory and all the historical trajectories.
Moreover, it exhibited a high probability (above 99%) for countries near
Argentina at the beginning of each voyage. To address these challenges,
we made modifications to the proposed algorithm, resulting in Algorithm
2.
Assuming that we have already constructed the historical trajectories and
computed the matrix of similarities between the different trajectories from
the historical dataset, the next described algorithms can be implemented
as follows:
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Algorithm 2 :

1: Determine a representative trajectory for each cluster: Select the historical
trajectory with the minimum distance to the cluster centroid.

2: Split the historical trajectories into training and test datasets, then train
the classification model.

3: for each historical trajectory do
(a) Calculate similarities between the new trajectory and the cluster

representatives.

(b) Calculate the inverse distance and normalize it (distance to probability).

(c) Determine the most probable cluster ID (Using a threshold). We
name this probability P (Ci), which represents the probability the new
trajectory belongs to the cluster Ci.

(d) for each cluster Ci do

Determinate the probability P (Dj |Ci), which represents the probability
of destination Dj given cluster Ci. This value is determined by the
classifier model prediction.

(e) end for

(f) The destination probability is finally computed using law of total
probability:

P (Dj) =

n∑
i=1

P (Dj ∩ Ci) =

n∑
i=1

P (Dj |Ci) · P (Ci)

.
4: end for

By implementing Algorithm 2, we were able to optimize computational
resources. However, during the process, we discovered that determining
the cluster ID using FASTDTW sometimes produced incorrect results
due to the consideration of sequence length when calculating similarities.
To overcome this challenge, we introduced an additional step where we
compare new trajectories with the cluster representative within a circular
region. The center of the circle is defined by the GPS coordinates of the
trip’s starting point, and the radius is equal to the length of the new
trajectory.

To address this issue, we decided to explore two different approaches.
The first approach, described in Algorithm 3, involves generating a global
classifier model using historical trajectories and using it for predictions.
The second approach, described in Algorithm 4, focuses on generating a
classifier model using historical trajectories specifically within the most
probable cluster ID.
Assuming we have the results of the clustering, the cluster representatives,
the algorithms can be described as follows:
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Algorithm 3 :

1: Split the historical trajectories into training and test datasets, then train
the classification model.

2: for each historical trajectory do
(a) Calculate the similarities between the new trajectory and the cluster

representatives within the defined circular region.

(b) Calculate the inverse distance and normalize it (distance to probability).

(c) Determine the most probable cluster ID (Using a Threshold). We name
this probability P (Ci), which represents the probability the new trajec-
tory belongs to the cluster Ci.

(d) for each cluster Ci do

Determinate the probability P (Dj |Ci), which represents the probability
of destination Dj given cluster Ci. This value is determined by the
classifier model prediction.

(e) end for

(f) The destination probability is finally computed using law of total prob-
ability:

P (Dj) =

n∑
i=1

P (Dj ∩ Ci) =

n∑
i=1

P (Dj |Ci) · P (Ci)

.
3: end for
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Algorithm 4 :

1: for each historical trajectory do
(a) Calculate the similarities between the new trajectory and the cluster

representatives within the defined circular region.

(b) Calculate the inverse distance and normalize it (distance to probability).

(c) Determine the most probable cluster ID (Using Threshold). We name
this probability P (Ci), which represents the probability the new trajec-
tory belongs to the cluster Ci.

(d) Train the classification model using historical trajectories that belong
to the list of cluster ID obtained in the previous step.

(e) for each cluster Ci do

Determinate the probability P (Dj |Ci), which represents the probability
of destination Dj given cluster Ci. This value is determined by the
classifier model prediction.

(f) end for

(g) The destination probability is finally computed using law of total prob-
ability:

P (Dj) =

n∑
i=1

P (Dj ∩ Ci) =

n∑
i=1

P (Dj |Ci) · P (Ci)

.
2: end for

5. Evaluating:

To evaluate our approaches, we will use a set of 615 trajectories that are
different from the historical trajectories. We will evaluate the prediction
performance of our model by sequentially constructing the trajectories,
we will incorporate the first 20% of the vessel’s trajectory evolution, and
subsequently add 20% segments until the entire trajectory is formed. At
each step, we will predict the destination and assess if our model improves
as we update the trajectory.

This evaluation process will provide insights into the effectiveness and
accuracy of our model in predicting vessel destinations over time.

The output of our model will be presented as flow:

Output = {Country1 : p1,Country2 : p2, . . . ,Countryn : pn},
n∑

i=1

pi = 1

To better understand the output structure of our model, the table 3.4 dis-
plays the predicted destinations over the trajectory evolution for a vessel
traveling from Argentina to Morocco
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Table 3.4: Predicted Destinations for a Vessel Traveling from Argentina to
Morocco Over Trajectory Evolution

Trajectory Evolution Predicted Destinations

20%

{Brazil : 0.3085, Cuba : 0.2128,

China : 0.1981, Morocco : 0.1620,

Algeria : 0.0738, South Africa : 0.0354,

Colombia : 0.0056, Senegal : 0.0037}

40%

{Australia : 0.0019, Brazil : 0.0044,

Colombia : 0.0592, Algeria : 0.3206,

Egypt : 0.0029, Spain : 0.0085,

United Kingdom : 0.0018, Indonesia : 0.0039,

Ireland : 0.0052, Italy : 0.0058,

Kenya : 0.0018, Libya : 0.0062,

Morocco : 0.5139, Malaysia : 0.0013,

Netherlands : 0.0052, Poland : 0.0064,

Saudi Arabia : 0.0204, Senegal : 0.0051,

Turkey : 0.0019, Venezuela : 0.0202,

Vietnam : 0.0026}
60% {Algeria : 0.0664, Morocco : 0.9336}
80% {Algeria : 0.0075, Morocco : 0.9925}
100% {Morocco : 1.0}

To calculate the accuracy of our different approaches, we will determine
if the TRUE destination occurs in the predicted destinations or each tra-
jectory evolution stage (e.g., 20%, 40%, etc.). We will then divide the
number of correct predictions by the total number of trajectories in that
stage. This will give us the accuracy of our model’s predictions for each
week.

Additionally, as we calculate the probabilities of each destination, we can
visualize the evolution of the average probability for the corresponding
TRUE destination over time. This will provide insights into how the
model’s confidence in the predicted destination evolves as more trajectory
information becomes available.

For example, let’s consider table 3.5 representing three different vessels.
We will calculate the accuracy and average probabilities for the first tra-
jectory evolution stage (20% of the trajectory). In the table, it is observed
that the true destination exists in the predicted destination for the first
two vessels, while for the third vessel, the true destination does not exist
in the predicted destination. Therefore, the accuracy would be calculated
as 2 out of 3, resulting in a ratio of 2/3.
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Moving on to the average probabilities, let’s assume that for the first vessel,
the correct destination has a probability equal to 0.1620 in the predicted
destination. Similarly, for the second vessel, the correct destination has
a probability equal to 0.3789 in the predicted destination. the average
probability would be 0.27045.

Table 3.5: Vessel Destinations Forecasting for Three Vessels in the First stage
(20% of the trajectory )

Vessel id Destination Predicted Destinations

1 Morocco

{Brazil : 0.3085, Cuba : 0.2128,

China : 0.1981, Morocco : 0.1620 ,

Algeria : 0.0738, South Africa : 0.0354,

Colombia : 0.0056, Senegal : 0.0037}

2 Cuba

{Bangladesh : 0.1233, China : 0.0976,

Cuba : 0.3789 , Algeria : 0.0502,

Egypt : 0.0723, United Kingdom : 0.0021,

Indonesia : 0.0008, Japan : 0.2296,

South Korea : 0.0092, Morocco : 0.0147,

Poland : 0.0018, Saudi Arabia : 0.0012,

Senegal : 0.0023, Turkey : 0.0161}

3 South Africa

{Australia : 0.4512, Bangladesh : 0.0062,

Indonesia : 0.3014, Iran : 0.0055,

Japan : 0.2312, Poland : 0.0023,

Saudi Arabia : 0.0021}

The results are presented in the flowing Figures.
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(a) Performance Analysis of Algorithm 2 for Vessel Destination Forecasting

(b) Performance Analysis of Algorithm 3 for Vessel Destination Forecasting

(c) Performance Analysis of Algorithm 4 for Vessel Destination Forecasting

Figure 3.10: Results of the Different Approaches for Vessel Destination
Forecasting

As we can observe in Figure 3.10a, the accuracy of the model and the av-
erage probabilities demonstrate progressive improvement. However, these
outcomes do not meet the objectives set by Dnext. In the initial stages,
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notably low average probabilities are assigned to the true destination.
Additionally, we observe a high accuracy but relatively low average prob-
ability, indicating a lack of confidence in predicting the True Destination.
These findings highlight the need for further refinement of our model to
accurately predict vessel destinations during the early stages of trajectory
evolution.

After implementing the step of comparing new trajectories with the clus-
ter representatives within the defined circular region, we observed (Figure
3.10b) an improvement in the average probabilities of our model during
the initial stage (20% of the trajectory), which increased by 5% compared
to the previous results. However, despite the accuracy assigned to the true
destinations decreased by 11%. This suggests that our model is more con-
fident in its destination predictions, as it correctly predicts the destination
in most cases. However, further refinement is still required to enhance the
certainty and reliability of our predictions. So, let’s explore the results of
the 4th proposed algorithm.

As observed in Figure 3.10c, when using the 4th approach, the accuracy
of the model decreased compared to the results obtained from Approach 3
(Figure 3.10b) and Approach 2 (Figure 3.10a). This decrease in accuracy
can be attributed to the fact that in Approach 4, we train the classi-
fier model using only historical trajectories that belong to the list of the
most probable cluster ID. By doing so, we reduce the number of proba-
ble destinations, which affects the overall accuracy of the model. In this
case, the accuracy is reduced more then 13% compared to the previous
implementation (Algorithm 2).

However, there was a notable improvement in the average probabilities
of the predicted destinations. This improvement can be explained by the
fact that by focusing on the most probable cluster ID, the model becomes
more confident in its predictions. The average probabilities evolve with
the duration and increase on average by 12% compared to the previous
approach.

These results can be attributed to two main factors:

(a) Distribution of Historical Trajectories Durations: As shown in Figure
3.8, the distribution of voyage durations in the historical trajectories
plays a significant role in the performance of our model. In the initial
weeks, the model may not have enough historical trajectories with
similar durations to make accurate predictions. This lack of diver-
sity in trajectory durations can limit the model’s ability to capture
the variability in destination patterns, leading to lower accuracy and
average probabilities.

(b) Limited Data for Some Destinations: Another challenge we encoun-
tered is the presence of vessels with less than 10 trajectories per
destination. This limitation arises from the availability of historical
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trajectory data only from the year 2022. As a result, certain des-
tinations may have insufficient data to train the model effectively,
leading to lower accuracy and average probabilities for those specific
destinations.

To address these challenges, it would be beneficial to gather more re-
cent trajectory data and expand the dataset to include a wider range of
voyage durations. This would provide the model with a more compre-
hensive understanding of destination patterns and improve its predictive
performance in the early weeks. Additionally, acquiring more trajectory
data for vessels with fewer trajectories per destination would enhance the
model’s accuracy and confidence in predicting those specific destinations.

In conclusion, Approach 2 provides a model with high accuracy, reaching
up to 90%. However, it is less confident in its predictions, as indicated by
the relatively low average probabilities. On the other hand, Approach 4 is
more confident in its predictions but less accurate compared to Approach
2 and 3.

3.5 Conclusion :

In conclusion, our work on the Dnext lineup generation, vessel tracking, and
destination forecasting processes has resulted in significant improvements. We
successfully enhanced the execution time of the lineup generation algorithm and
incorporated lineups for Argentina and the USA. The adoption of the new Dnext
lineup improved stop detection and labeling in the tracking process.

Although our vessel destination forecasting approaches showed promising re-
sults, there are still limitations to address. Early-stage predictions require fur-
ther refinement, and the availability of historical trajectory data and vessel-
specific limitations impact the accuracy of destination predictions.

In summary, our work has made important strides in improving the Dnext
lineup generation process, vessel tracking, and destination forecasting. Future
work should focus on overcoming the identified limitations to enhance the overall
performance and reliability of the system.
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GENERAL CONCLUSION:

This work introduces Dnext, a specialized startup in the agricultural financial
market, and discusses the enhancements made in its workflow. The improve-
ments include the Dnext lineup generation, vessel tracking, and vessel destina-
tion forecasting.

In the Dnext lineup generation, we implemented features allowing users to
identify and resolve duplicated information, while also incorporating lineups
from Argentina and the United States of America. The process was generalized
to accommodate various lineup information structures, resulting in a significant
reduction in execution time from hours to just minutes.

Moving to the vessel tracking process, we integrated the new version of Dnext
Lineups and made enhancements in stop detection and labeling. Additional
secondary stop points were introduced, and support for regions with low GPS
density, such as the Persian Gulf, Malaysia, and Vietnam, was added. These
improvements led to a decrease in the number of vessels experiencing tracking
failures.

The third step involved vessel destination forecasting, where a methodology
was presented that leveraged the voyage information obtained from the vessel
tracking results. Various approaches, including clustering techniques and based-
tree models, were explored to enhance destination predictions based on historical
trajectory data.

Results demonstrated progressive improvements in accuracy and average prob-
abilities over time. However, limitations were identified in early-stage predic-
tions and the availability of historical trajectory data for certain destinations.
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In summary, the workflow enhancements in Dnext have yielded significant
benefits, including improved execution time, enhanced stop detection and label-
ing, and valuable insights into vessel destinations. Future efforts should focus
on refining prediction models, potentially exploring destination-based cluster-
ing to address issues of multiple clusters with the same destination. Moreover,
expanding the availability of trajectory data will further enhance the accuracy
and reliability of vessel destination forecasting.
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APPENDIX A

ANNEX

A.1 Contextual Background:

A.1.1 The Haversine formula:

The Haversine formula is a mathematical equation designed to calculate the dis-
tance between two points on the surface of a sphere, accounting for its curvature.
This formula provides a more accurate estimation of the distance compared to
simple Euclidean distance calculations. It incorporates the latitudes (ϕ1 and
ϕ2) and longitudes (λ1 and λ2) of the two points to determine the distance d.
The formula involves trigonometric functions, such as sine and arcsin, and is
represented as:

h = sin2
(
ϕ2 − ϕ1

2

)
+ cos(ϕ1) · cos(ϕ2) · sin2

(
λ2 − λ1

2

)
d = 2 ·R · arcsin

(√
h
)

Here, d represents the distance between the two points, and R denotes the
radius of the sphere (e.g., Earth). The Haversine formula finds applications in
various fields, including navigation, geographic information systems, and deter-
mining distances between cities or finding the nearest airports. While it assumes
a spherical Earth, this approximation is suitable for the distances typically en-
countered in these applications.

A.1.2 The Fréchet distance:

The Fréchet distance, introduced by Maurice Fréchet in 1906 [9] and algorith-
mically implemented by Alt & Godau in 1995 [3], is a measure that assesses the
similarity between two polylines in a 2D space. It serves as a metric to quantify
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how well one polyline can be deformed into another while maintaining their
order. The algorithm for computing the Fréchet distance follows these steps:

1. Begin by defining two polylines, A and B.

2. Draw a diagonal line that connects the first point of A to the first point
of B. This line represents the initial configuration of the two polylines.

3. In each step, move the endpoint of the diagonal line to the next point
along polylines A and B. The endpoint that covers the least distance is
updated.

4. Repeat step 3 until the diagonal line reaches the final point of both poly-
lines.

5. The Fréchet distance between the two polylines is determined as the max-
imum distance between the diagonal line and the two polylines.

It’s important to note that the distance metric employed in the Fréchet dis-
tance calculation can be any distance function, such as (but not limited to)
Manhattan distance, Euclidean distance, Minkowski distance on a plane, or
Haversine distance in the case of spherical coordinates. The Fréchet distance
serves as a valuable tool for comparing polylines in various applications, includ-
ing pattern recognition, computer vision, robotics, and geographic information
systems.

A.1.3 Dynamic Time Warping:

Dynamic Time Warping (DTW) [10] is a technique used to measure the similar-
ity between two time series sequences İt allows for the comparison of sequences
with different lengths and variable speed. The steps involved in the DTW algo-
rithm are described below:

1. Start by defining the two time series sequences, A and B.

2. Create a grid, where each cell represents a pairing of a point from sequence
A and a point from sequence B.

3. Initialize the first cell with the distance between the first points of A and
B.

4. Fill in the grid by calculating the cumulative distance between each pair of
points in sequences A and B. This can be done by considering the distances
to the left, top-left, and top cells of the current cell in the grid. Choose
the minimum distance among these three and add it to the current cell.

5. Continue filling in the grid until the last cell is reached, considering all
possible paths.

6. The DTW distance between the two time series sequences is given by the
value in the bottom-right cell of the grid.
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It is important to note that the distance metric used in DTW can be any
distance function suitable for comparing the data points in the time series se-
quences.

In Python, there are two DTW implementations available: ”dtw” and ”FAST-
DTW” The ”dtw” library offers a straightforward approach with customization
options, while ”FASTDTW” [6] provides faster computation times and lower
complexity. Specifically, FASTDTW ensures optimal or near-optimal align-
ments with an impressive O(n). time and memory complexity, making it par-
ticularly suitable for handling larger datasets efficiently.

A.1.4 Markov Chain:

The Markov chain concept was invented by Andrey Markov [13] in the early
20th century, it is a mathematical model used to describe a sequence of events or
states, where the probability of transitioning from one state to another depends
only on the current state and not on the history of states before it. This property
is known as the Markov property or the memory lessness property.

A Markov chain consists of a set of states and a set of probabilities or
transition probabilities that represent the likelihood of transitioning from one
state to another. These transition probabilities are typically represented in a
transition matrix, where each element represents the probability of transitioning
from one state to another.

The behavior of a Markov chain can be analyzed using various techniques,
such as computing the steady-state distribution, which represents the long-term
probabilities of being in each state.

Markov chains have applications in a wide range of fields, including physics,
economics, genetics, finance, and computer science. They are particularly useful
for modeling and analyzing systems that exhibit probabilistic or stochastic be-
havior over time. Some common applications include weather forecasting, stock
market analysis, natural language processing, and speech recognition. Markov
chains are also fundamental to the field of Markov chain Monte Carlo (MCMC)
methods, which are used for statistical sampling and Bayesian inference.

The simplicity and flexibility of Markov chains make them a valuable tool for
modeling and understanding dynamic systems with uncertain or probabilistic
behavior.

A.1.5 Random forest:

Introduced by Leo Breiman [5] in 2001 , a random forest classifier is a supervised
machine learning algorithm commonly used for binary and multi-class classifica-
tion tasks. It comprises a collection of decision trees, where each tree functions
as an independent classifier. The final prediction is obtained by aggregating the
predictions from all individual trees.

To construct the random forest, each decision tree is trained on a random
subset of the training data. This subset is created by sampling with replacement,
a technique known as bootstrapped sampling. By training multiple trees with
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different views of the data, the random forest aims to reduce overfitting and
enhance the model’s ability to generalize to unseen data. The prediction of the
random forest classifier is an ensemble of the predictions made by each decision
tree, with the majority class being the final output.

Random forest classifiers offer several advantages. They are computation-
ally efficient and can handle both numerical and categorical features without
requiring feature scaling or normalization. Additionally, they provide estimates
of feature importance, enabling the identification of the most relevant features
for making predictions.

The algorithm has found successful applications in various domains, includ-
ing biology, finance, and image classification, among others.

A.1.6 Extreme Gradient Boosting:

XGBoost, acronym of ”Extreme Gradient Boosting”, was introduced by Tianqi
Chen and Carlos Guestrin [7] in 2016. XGBoost is an optimized implementation
of the gradient boosting algorithm. It is a powerful and widely used machine
learning algorithm known for its exceptional performance in structured data
and tabular datasets. XGBoost has gained popularity in various data science
competitions and industry applications due to its ability to deliver accurate
predictions and handle complex tasks. The XGBoost algorithm works by se-
quentially adding decision trees to the ensemble, where each new tree is built to
correct the errors made by the previous trees. This iterative process continues
until a predefined number of trees is reached, or until no further improvements
can be made. XGBoost utilizes a gradient-based optimization technique to min-
imize a specific loss function, such as mean squared error for regression tasks or
log loss for classification tasks.

One of the key features of XGBoost is its ability to handle a wide range
of data types and feature formats. It can handle both numerical and categori-
cal features and automatically handles missing values. XGBoost also provides
flexibility in customizing the training process through various hyperparameters,
allowing users to fine-tune the model’s performance.

The benefits of XGBoost include its excellent predictive accuracy, fast train-
ing speed, and scalability to large datasets. It also offers built-in feature im-
portance measures, enabling insights into the most influential features for the
model’s predictions. XGBoost has been widely applied in various domains, in-
cluding finance, healthcare, natural language processing, and recommendation
systems, where it has consistently demonstrated its effectiveness in tackling
complex machine learning tasks.

A.1.7 Density-Based Spatial Clustering of Applications
with Noise:

Introduced by Ester et al. [8] in 1996, Density-Based Spatial Clustering of Ap-
plications with Noise (DBSCAN) is a popular unsupervised learning algorithm
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for discovering clusters in large and dense datasets. Unlike other clustering al-
gorithms, DBSCAN does not require labeled data for clustering. The algorithm
operates as follows:

1. DBSCAN defines two parameters: (ϵ and the minimum number of points
required to form a cluster. (ϵ represents the maximum distance between
two points in the same cluster, while the minimum number of points con-
trols cluster density.

2. The algorithm begins by selecting an arbitrary point from the dataset
and checks if there are at least the minimum number of points within a
distance of (ϵ. If the condition is satisfied, a cluster is formed, and the
algorithm expands it by examining all points within (ϵ distance of the
previously added points.

3. The expansion of the cluster continues until no more points can be added.
Then, the algorithm moves to the next unvisited point and repeats the
process until all points have been processed.

4. Points that do not belong to any cluster are considered noise or outliers.
DBSCAN can identify both clusters and outliers without relying on labeled
data.

DBSCAN exhibits a time complexity of O(nlog(n)) in the best case and
O(n2) in the worst case, where n represents the number of points in the dataset.
The space complexity of the algorithm is O(n). DBSCAN offers several advan-
tages over other clustering algorithms, including its ability to handle clusters
of arbitrary shapes and sizes and its capability to detect clusters with varying
densities. The only inputs required for the algorithm are the definition of ϵ
and the minimum number of points, which can be determined based on domain
knowledge or through an iterative process.

DBSCAN finds applications in diverse fields such as computer science, biol-
ogy, and engineering. It is employed for tasks including density-based clustering,
anomaly detection, and outlier detection.

A.1.8 Long Short TermMemoryModels:

Introduced in 1997 by Hochreiter and Schmidhuber [11], Long Short-Term Mem-
ory (LSTM) is a type of Recurrent Neural Network (RNN) that addresses the
vanishing gradients problem often encountered in traditional RNNs. RNNs are
commonly used for processing sequential data, where the current output relies
on previous inputs. However, the vanishing gradient problem can hinder the
network’s ability to capture long-term dependencies.

LSTMs have emerged as a popular deep learning technique for sequential
data processing. They incorporate memory cells, which act as the network’s
memory, and gates that regulate the flow of information into and out of the
memory cells. The three types of gates in an LSTM network are the Input Gate,
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Forget Gate, and Output Gate. These gates, controlled by sigmoid activation
functions, enable precise control over the information flow.

LSTMs find applications in various domains, including speech recognition,
natural language processing, machine translation, sentiment analysis, and stock
market prediction. They excel in tasks where retaining information from pre-
vious inputs is crucial, and long-term memory is required to make accurate
predictions.
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onal curves. Int. J. Comput. Geometry Appl., 5(1):75–91, March 1995.

[4] M. Bachar, G. Elimelech, I. Gat, G. Sobol, N. Rivetti, and A. Gal. Venilia,
on-line learning and prediction of vessel destination. In Proceedings of
the 12th ACM International Conference on Distributed and Event-Based
Systems, DEBS ’18, page 209–212, New York, NY, USA, 2018. Association
for Computing Machinery.

[5] L. Breiman. Random forests. Machine Learning, 45(1):5–32, October 2001.

[6] S. S. P. Chan. Fastdtw: Toward accurate dynamic time warping in lin-
ear time and space. http://cs.fit.edu/~pkc/papers/tdm04.pdf, 2007.
Accessed on June 4, 2023.

[7] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 785–794. ACM, 2016.

[8] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, and et al. A density-based
algorithm for discovering clusters in large spatial databases with noise. In
Proceedings of the 2nd International Conference on Knowledge Discovery
and Data Mining (KDD ’96), volume 34, pages 226–231, 1996.

[9] M. Fréchet. Sur quelques points du calcul fonctionnel. Rendiconti del
Circolo Matematico di Palermo (1884-1940), 22(1):1–72, 1906.

46

https://agrisupp.com/en/data/lineups
https://www.oliverwyman.com/our-expertise/insights/2023/mar/commodity-trading-report-2023.html#assets
https://www.oliverwyman.com/our-expertise/insights/2023/mar/commodity-trading-report-2023.html#assets
http://cs.fit.edu/~pkc/papers/tdm04.pdf


[10] T. Giorgino. Computing and visualizing dynamic time warping alignments
in r: The dtw package. Journal of Statistical Software, 31(7):1–24, 2009.

[11] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, December 1997.
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