A Hybrid Grid/Cloud Distributed platform : a
case study

Mohamed Ben Belgacem, Haithem Hafsi, and Nabil Abdennadher

University of Geneva
Mohamed .Benbelgacem@unige.ch
National School of Computer Science (ENSI), Tunisia
Haithem.Hafsi@gmail.com
University of Applied Sciences, Western Switzerland, hepia Geneva
Nabil.abdennadher@hesge.ch

Abstract. The scene of the computational sciences has considerably
changed during the last years. Today, New emerging Desktop grid and
Cloud e-infrastructure have a considerable potential to be adopted and
used in large scale to exploit thousands of CPUs power to run both sci-
entific and commercial applications. This paper targets scientists and
programmers who need to accelerate their scientific research by run-
ning their applications on distributed Grid/Cloud infrastructures. We
present a hybrid Grid/Cloud platform used to deploy a phylogeny appli-
cation called MetaPIGA. The aim is to combine the advantages of Grid
and Cloud architectures in order to set up a robust, reliable and open
platform.

Keywords: distributed computation, Grid and Cloud computing, MetaPIGA

1 Introduction

The concept of grid Computing was born in the mid of 1990s as an answer to the
increased demand of high performance computing that required more computing
power than a single cluster could provide [I]. According to [2], Grid Computing
has three characteristics:

— decentralized resource control,
— non-guaranteed qualities of services : latency, throughput, and reliability,
— standardization: Grid middleware is based upon open and common protocols.

Simultaneously with Grid Computing, a second alternative emerged. It con-
sists of executing high performance applications on anonymous connected com-
puters by using their available resources. This concept is called Volunteer Com-
puting (VC). The most known systems are BOINC [3] and XtremWeb [4]. In the
remainder of this paper, Grid will also include volunteer computing.

Despite the number of research projects carried out in the domain of Grid,
these technologies were rarely commercialized. The development of Grid Com-
puting and its standards was mainly driven by scientific communities.

For Cloud Computing, there is no established definition yet. According to [5],
“a Cloud is a pool of virtualized computer resources”. The same paper considers
Clouds to complement Grid environments by supporting resources management.
Clouds allow the dynamic scale-in and scale-out of applications by the provision-
ing and de-provisioning of resources.

This paper proposes a “hybrid” platform composed of a volunteer comput-
ing infrastructure, called XtremWeb-CH (XWCH: www.xtremwebch.net), and
a Cloud infrastructure, used as provisioning system. The platform is used to
develop, deploy and execute a high performance phylogenetic application called
MetaPIGA [6]. As stated by [7] and [5], Clouds are a “useful utility that you can
plug into your Grid”. Our vision is to:

— combine the reliability of Cloud infrastructures and the “openness” of Grid
environments,

— allow users deploying their applications on a reliable platform composed of
a heterogeneous infrastructure: Grid, Cluster and Cloud.

This document is organized in 6 sections. After the introductory section [T} sec-
tion [2] gives an overview of Grid vs. Cloud. Section [3| presents the Venus-C
European project that aims at implementing a development environment for e-
sciences applications on Cloud Infrastructure. The concepts proposed by Venus-
C are used as guidelines in our research. Section [presents the hybrid solution
developed in the framework of our research. Section [5| gives some experimental
results carried out in order to evaluate the proposed solution. Finally, section [f]
gives some perspectives of this research.

2 Grid vs. Cloud

This section compares Grid and Cloud [§] within 7 criteria detailed below:

1. Resource localization: while Grid Computing is defined by its geographically
dispersed and decentralized resources, Cloud Computing seems to be a step
back towards centralizing IT in data centers.

2. Virtualization: few research projects have integrated virtualization in grid
projects. In Cloud, virtualization is one of the cornerstones; it allows the
dynamic scale-in and scale-out of applications by the provisioning and de-
provisioning of resources.

3. Type of applications: Contrarily to Grid, Clouds are not limited to e-sciences
“batch” applications, but also support “interactive applications” such as
Web and three-tier architectures.

4. Development of applications: the approach of how to develop applications
is very different in Grids and Clouds. In Grids, the user typically needs to
generate a binary for his application. This binary is then transferred to and
executed on the remote resources in the Grid. Clouds allow a fundamentally
different approach to software development. For instance, the Cloud provider
offers “ready-to-use” components, the user can then dynamically assemble
these existing functionalities to construct his Cloud-native application.

5. Access & ease of use: access to Grid resources is realized via a specific and
often complex middleware. In contrast, interaction with resources in the
Cloud is established via standard Web protocols, facilitating the access for
the users. The lightweight accessibility and ease of use is one key factor that
helped Cloud vendors succeed to convince non-academic customers to deploy
their applications on their Cloud in a relative short period of time.

6. Business model and SLAs: as stated previously, business model, pricing and
SLAs are one of the cornerstones of Cloud. These concepts are completely
absent in Grid.

7. Switching cost: Through standardization, a Grid user can easily switch from
the resources of one Grid provider to another. Due to the lack of standards,
this is not possible in Cloud environment. Typically, Cloud providers have
no interest in participating and implementing standards enabling potential
customers to switch easily.

3 The Venus-C European project

3.1 Project Overview

Venus-C [9] is a European project funded with the purpose to provide a new
friendly-user Cloud solution for the scientific research domain in Europe. The
target end-users are mainly individuals and researchers group that never have
had access to high performance computing resources and are content with their
desktop machines to run their applications. The objective of Venus-C project is
to make it possible for researchers community to run easily their applications
on a large Cloud computing infrastructure in order to accelerate their scientific
researches. Several scientific applications from several domains have been ported
on the Venus-C platform.

Technically, the Venus-C is an interface between the Cloud providers and the
end-users. It aims to provide a Platform as a Service (PaaS) with a set of tools
and APIs to easily develop e-sciences applications and execute jobs that requires
an execution coordination and a platform elasticity features.

One of the potential Cloud resources providers of theVenus-C project is the
Microsoft Windows Azure infrastructure, which is based on Windows operating
system. In what follows, we will interest on one of the programming model in
Venus-C project: the “Generic Worker”.

3.2 Generic Worker concept

The Venus-C project comes up with the Generic Worker (GW) concept, an
intermediate layer between the Azure platform and the end-users that shields
them from technical complexity of the steps to use cloud computing resources.
The main role of the GW is to facilitate the creation of the VM instances on the
Cloud infrastructure and the application execution. Figure [1| depicts the GW
component and its features. In its simple form, the GW is composed of a .Net

based package and an API used to start VM instances on the Azure platform.
Several types of the VM are supported: small, medium large and extra-large. The
type of a VM is mainly determined by the number of cpus and the memory size.
To start VM instances through the Azure web portal, the user should upload
the GW package with his XML configuration that mainly determines:

— the number of VM instances
— data access and certificate credentials.

Accounting
service Y_

Ne----o---

1

user '
Client Service —+ F®' jobs
M I
NetAPI | GW Instance @D H table

Local Application ata
disc storage Storage

University

Cloud

Fig. 1: Venus-C architecture overview

A Venus-C application can be composed of a workflow of jobs, where depen-
dencies are based on input files: a job cannot be started unless its input files
exist in the storage domain. Each running VM contains a GW instance that
handles the execution of a given job (1). All the submitted jobs are stored in
an Azure database table, and, then, scheduled by a service monitoring to the
available GW instances. Periodically, each GW instance reads the database and
retrieves its scheduled job (2). To execute the job, the GW instance should check
the existence of its job’s input file in the Cloud storage domain, then, loads them
with the binary and any necessary libraries files to its local machine disc (3).
Accordingly, the status of the job is tracked during its execution in the database
(4). When the execution ends, the GW instance stages out the job result in the
user storage domain (5). Besides, the GW provides a web service interface that
allows the user through its client program to perform the scaling, notification
and job management services. It worth noticing here that the number of the GW
instances can be efficiently scaled on demand through the client program.

4 Hybrid Solution

The main idea behind the hybrid solution is to combine the XtremWeb-CH
volunteer computing platform (XWCH: www.xtremwebch.net) with:

— Cloud infrastructures such as Amazon Elastic Cloud Compute (EC2) [10]
and Azure,
— high performance oriented Cloud platforms such as Venus-C Generic Worker

(GW) package.

The goal is to create a scalable and reliable large scale distributed platform
used to deploy and execute the phylogenetic MetaPIGA application [6]. In what
follows, we present, first, a brief description of the XWCH platform. Then, we
describe how the hybrid solution is elaborated.

4.1 The XWCH platform

The XWCH platform consists of three components: a coordinator, workers and
warehouses. The coordinator schedules jobs and pre-assigns them to the workers.
An XWCH worker is a small Java daemon that runs on a user or institute
machine. Periodically, a worker reports itself to the coordinator, asks for a job,
retrieves job’s input files and stages out computation results in the warehouses.
Since the workers could be fire-walled and could not communicate with each
other to retrieve files for their jobs, the warehouses are used as file repositories
to ensure file communication between the jobs within the same workflow. If the
coordinator does not receive signal from a worker which is executing a job, it
simply removes it from the workers list and assign its job to another available
worker. A flexible API allows users to submit and monitor jobs according to
their needs. Several applications have been ported on the XWCH platform [IT].

4.2 Hybrid platform

The “global” challenge behind bridging XWCH and Cloud is to scale up the
XWCH infrastructure with Cloud resources. Let’s remind here that XWCH
workers are volunteer based, they belong to universities and/or individuals. Re-
sources (CPU, cores number, memory, software tools) which are available on
these volunteer workers are similar to those available on “off-the-shelf” comput-
ers.

The main idea can be simply described as follow: when resources requested
by the MetaPIGA application are not available on the volunteer XWCH infras-
tructure, the system creates its “private” resources on the Cloud according to
the needs (processor performance, main memory, etc.) of the application. These
resources are created “on the fly” on the Cloud, used by MetaPIGA jobs and
released as soon as the execution ends. In this paper, we consider two scenarios
for resources scaling.

In the first scenario(figure [2)), MetaPIGA jobs are submitted to the XWCH
coordinator (1). When the requested resources are not available on the Volun-
teer infrastructure, the XWCH-coordinator creates a “private” XWCH worker
supporting these resources (2). This private worker will then execute the job for
which it was created. In this scenario, Cloud resources are considered as part
of the XWCH infrastructure. The user uses only one developing environment :

XWCH API. This scenario was tested with two Cloud infrastructures: Amazon
and Azure.

In the second scenario (figure [2), when XWCH infrastructure is unable to
provide the necessary resources, the MetaPIGA application creates itself the
requested resources and submits directly its jobs to the Cloud (1). In this case,
Cloud resources are not considered as part of the XWCH platform. MetaPIGA
jobs use the Cloud storage to retrieve their input files. After execution, the job’s
results are stored in the Cloud storage in order to be retrieved by the metaPIGA
application. The developer uses two different APIs to submit his jobs: XWCH
API and Cloud API. He also manages data flow between jobs running on the
Cloud and those running on XWCH platform. This scenario was tested with
Venus-C GW platform.

(Scenario 1) XWCH platform (Scenario 2) XWCH platform
o @ ot T I s Tl I
O XWCH worker] XWCH worke
< o5

1

MetaPIGA WM @ MetaPIGA
application - application
—————————————— Scale up ™)
resources

Fig. 2: Hybrid platform

ot \\.“’G\“(S
W

| St |

infrastructure
infrastructure
Ay

5 Experiments

The two proposed scenarios are used to deploy and execute the MetaPIGA ap-
plication, developed at the University of Geneva, over large hybrid computing
infrastructure.

5.1 MetaPIGA application

The Java based MetaPIGA [6/12] application consists of a robust implementation
of several stochastic heuristics for large phylogeny inference (under maximum
likelihood), including a simulated annealing algorithm, a classical genetic algo-
rithm, and the metapopulation genetic algorithm (metaGA) together with com-
plex substitution models, discrete Gamma rate heterogeneity, and the possibility
to partition data. Heuristics and substitution models are highly customizable
through manual batch files and command line processing.

MetaPIGA is a CPU time consuming application. For instance, one big
dataset needs in general 500 CPU hours. Assuming that 200 analyses are launched
every year, the total number of CPU hours needed per year is equal to 100°000.

MetaPIGA is well suited for parallelization since several populations can be
run in parallel and can therefore be sent to different machines.

5.2 Measurements

Figure compares the overhead generated by the two API : XWCH and
Venus-C GW. Since the native Venus-C GW API is only implemented on Azure,
we use this platform as a hardware infrastructure.

The results show that the overhead generated by XWCH API is slightly
inferior to Venus-C GW API. In this figure, the number of available XWCH
workers (resp. GW instances) is equal to 20.

Figure compares the performances of MetaPIGA when executed on an
XWCH platform using three “types” of workers:

— volunteer, non dedicated, workers,
— workers deployed on Azure,
— workers deployed on Amazon.

4500 6000 : :
-e- Venus-C G B -»- Azure resources ,
4000 —— XWCH —e— Volunteer resources| =
5000[{-= - Amazon resources ’

3500

4000f
<3000

me

= 2500

3000

iol

2000

Execution time (sec)

Execut

20001
1500
1000}

1000

500 0

0 20 40 60 80 100 0 20 40 60 80 100
number of jobs number of jobs
(a) on XWCH and Venus-C GW (b) on workers deployed on Azure,

Amazon and volunteer computer

Fig. 3: Time execution of MetaPIGA

For both Amazon and Azure workers, we have used small VM instances.
An Amazon VM instance runs Ubuntu operating system and has a 1 ECU
(EC2 Compute Unit ~ 1.0 — 1.2 GHz) of CPU speed and 1.7 GB of mem-
ory. An Azure VM instance runs Windows operating system and has a 1.6 GHz
of CPU speed and 1.75 GB of memory. Regarding the XWCH workers (Linux
and Windows), they are installed on student machines having each an average
CPU speed of 2.2 GHz and 3 GB of system memory.

Results show that the execution time of the MetaPIGA application on Azure
workers is slightly higher comparing to the Amazon ones. Besides, the non-stairs
shape obtained in the XWCH curve can be explained by the volatility aspect of
the XWCH platform, i.e that the number of connected XWCH workers on the
platform can vary during execution.

6 Conclusion

This paper presents two scenarios to bridge the XWCH Grid platform with
Cloud infrastructure. Cloud is used as a provisioning system which allows users
to “rent” resources not supported by the Grid. Two scenarios were proposed: In
the first case Cloud resources are not seen by the user, they are managed by the
Grid itself. Contrarily to this approach, the second scenario assumes that the
user submits himself the jobs to the Cloud. It therefore obliges the developer to
use two different developing environments.

The two scenarios have been tested in the case of MetaPIGA application
with Amazon, Azure and Venus-C Cloud platforms. The next step will be to
generalize this approach to other applications and develop a “generic” toolkit
environment that supports other Cloud infrastructures.

References

1. Carl Kesselman and lan Foster. The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann Publishers, November 1998.

2. Tan Foster. What is the Grid? - a three point checklist. GRIDtoday, 1(6), July

2002.

BOINC. http://boinc.berkeley.edu/.

XtremWeb. http://www.xtremweb.net/.

Boss G, Malladi P, Quan S, Legregni L, Hall H. IBM high performance on demand

solutions. Technical report, IBM developerWorks, 2007.

MetaPIGA 2 - Large phylogeny estimation. http://http://www.metapiga.org/.

Wolfgang Gentzsch, DEISA. Grids are Dead! Or are they? http://wuw.

hpcinthecloud.com/hpccloud/2008-06-16/grids_are_dead_or_are_they.html,

2008.

8. Weinhardt C., Blau B., Meinl T., Stéer J. Cloud Computing - A Classification,
Business Models, and Research Directions. Business & Information Systems En-
gineering journal, 1:391 — 399, 2009.

9. VENUS-C European project. http://www.venus-c.eu/.

10. Amazon Elastic Cloud Compute. http://aws.amazon.com/ec2/|

11. Nabil Abdennhader, Mohamed Ben Belgacem, Raphaél Couturier, David Laiy-
mani, Sébastien Miquée, Marko Niinimaki, and Marc Sauget. Gridification of a
radiotherapy dose computation application with the xtremweb-ch environment. In
Proceedings of the 6th international conference on Advances in grid and pervasive
computing, GPC’11, pages 188-197, Berlin, Heidelberg, 2011. Springer-Verlag.

12. Mohamed Ben Belgacem, Nabil Abdennadher, Marko Niinimaki. Desktop Grid
Computing, chapter The XtremWebCH Volunteer Computing Platform (3). Nu-
merical Analysis and Scientific Computing Series. Chapman and Hall/CRC, June
25, 2012.

U W

o

http://boinc.berkeley.edu/
http://www.xtremweb.net/
http://http://www.metapiga.org/
http://www.hpcinthecloud.com/hpccloud/2008-06-16/grids_are_dead_or_are_they.html
http://www.hpcinthecloud.com/hpccloud/2008-06-16/grids_are_dead_or_are_they.html
http://www.venus-c.eu/
http://aws.amazon.com/ec2/

	A Hybrid Grid/Cloud Distributed platform : a case study

