
Towards a Peer-To-Peer Platform for High Performance Computing

Nabil Abdennadher*, Regis Boesch**
University of Applied Sciences, Western Switzerland

* abdennad@eig.unige.ch ** rboesch@eig.unige.ch

Abstract

This paper describes a Global Computing (GC)

environment, called XtremWeb-CH (XWCH). XWCH is
an improved version of a GC tool called XtremWeb
(XW). XWCH tries to enrich XW in order to match P2P
concepts: distributed scheduling, distributed
communication, development of symmetrical models.
Two versions of XWCH were developed. The first,
called XWCH-sMs, manages inter-task
communications in a centralized way. The second
version, called XWCH-p2p, allows a direct
communication between “workers”. XWCH is
evaluated in the case of a real high performance
genetic application.

1. Introduction

High Performance Computing (HPC) landscape has
radically changed since the end of the last decade.
Based initially on the use of parallel and vectorial
computers equipped with specific development
environments, computing power consumers are
adopting a new approach which takes advantage of the
Internet development. The idea consists on deploying
High Performance applications on anonymous
connected computers by using their available
resources. Indeed, the challenge today is to extract, at
low cost, a reasonable computing power from a widely
distributed platform (by executing interactive
applications) rather than extracting the maximum
power from a local supercomputer (by executing batch
applications). In another words, the majority of the
world's computing power is no longer in supercomputer
centers and institutional machine rooms. Instead, it is
now distributed in a hundred of millions of personal
computers all over the world. This concept is known as
Global Computing (GC).

The majority of GC projects adopted a centralized
structure based on a Master/Slave Architecture:

SETI@home [1], Entropia [2], United Devices [3],
Parabon [4], XtremWeb [5], etc. A natural extension of
the GC consists on distributing the "decisional degree"
of the master in order to avoid any form of
centralization. Thus, architectures such as
Clients/Servers and Master/Slaves would be
withdrawn. This concept, known as Peer-To-Peer
(P2P), was successfully used to share and exchange
files between computers connected to Internet. The
most known projects are Gnutella [6] and Freenet [7].
Indeed, file sharing is well adapted to this model.
However, the use of P2P in the field of HPC raises
several theoretical and practical problems. Dynamic
scheduling algorithms for parallel/distributed
applications can not be easily distributed. P2P
Computing also goes against the policies and safety
techniques largely used nowadays on Internet:
Firewalls, NAT addresses, etc. The objective of these
techniques is to protect resources connected to Internet
from any voluntary or involuntary abusive use. Internet
is then partitioned in several protected zones which are
unable to cooperate mutually. Problems related to the
development of a true P2P environment for HPC needs
remain open.

This document describes a GC environment, called
XtremWeb-CH (XWCH), which converges towards a
P2P system. XWCH is an improved version of a GC
tool called XtremWeb (XW). XWCH tries to enrich XW
in order to match P2P concept: distributed scheduling,
distributed communication, development of
symmetrical models, etc. In P2P systems, nodes are
assumed to be customers and servers at the same time.
Although it is utopian, this idea was retained as guide
line in the XWCH project.

This document is organized as follows: paragraph 2
presents the features that should be satisfied by a GC
platform in order to be considered as a real P2P
system. Paragraph 3 introduces the XW tool in its
original version. Paragraph 4 details the new concepts
XWCH introduces compared to XW. Paragraph 5
presents the experiments carried out in order to

evaluate XWCH. Lastly, the paragraph 6 gives some
perspectives of this research.

2. What is a real Peer-To-Peer system?

A true P2P environment should satisfy four criteria:
- Natural scalability: A P2P system should be

scalable by itself and not by “doping”. For that
purpose, the performance of the system should be
provided by its distributed structure: distributed
algorithms, distributed warehouses, distributed
scheduling algorithms, etc. This structure should
allow open access and search procedures. The
search engine should take into account the dynamic
nature of the network. The system should be based
on a demand-driven computation model: users'
queries are only processed when needed and prior
results are stored in warehouses, where they can be
accessed later on.

- Symmetric view: a node belonging to a P2P
platform should be server and client at the same
time.

- Platform heterogeneity: The system should support
heterogeneous architectures (hardware) and
platforms (software and operating systems). Since
these resources are anonymous, the system should
take into account all administration policies
implemented by local administrators.

- Multi-service: The system should be able to serve
any kind of request: HPC, file sharing, etc. We
believe that we cannot design a system that can
satisfy every user's needs. However, the system
should be able to supply users with adequate tools
that allow the implementation of specific services
not initially foreseen.

Systems like Gnutella and Freenet satisfy the three

first criteria, but these systems are mono-service since
they only target file sharing needs. XtremWeb,
Seti@home, Entropia and other GC environments do
not satisfy any of these criteria. They are based on a
non symmetric view (Master/Slaves) and exclusively
HPC oriented. They are not scalable since the master is
overloaded when the number of slaves increases. The
only tool which seems to satisfy all these constraints is
WOS (Web Operating System) [8]. Unfortunately, this
tool remained in a purely conceptual state and no
prototype was born.

3. XtremWeb

XW is a GC research project carried out at
Université d’Orsay (France). Like other Large Scale

Distributed Systems (LSDS), XW platform uses remote
resources (pocket computers, PCs, workstations,
servers) connected to Internet to execute a specific
application (client). The aim of XW is to investigate
how a LSDS can be turned into a High Performance
Parallel Computer. XW belongs to the more general
context of Grid research and follows the
standardisation effort towards Grid Services [9]. XW
satisfies the three main constraints imposed by any
Large Scale Distributed Environment: volatility,
heterogeneity and security.

Security is particularly difficult in the context of
LSDS because it’s impossible to trust hundreds of
thousands resources. Three main security problems are
linked to GC and P2P systems:
- Data integrity/privacy: This problem could be

resolved by applying the well known solutions of
encryption, public/private keys, etc.

- Protection of participating resources: No aggressive
application should be able to corrupt data or system
of any participating resource. Sandboxing is the
well known technique to resolve this problem. The
idea consists on filtering the system calls which
appear to be the main security holes of recent
operating systems. [10] explains how does XW use
the sandboxing to resolve the resource protection
problem.

- Result certification procedure: This problem is
linked to the lack of trust regarding the result
provided by the remote resource. Indeed, there is no
way to control precisely what happens on a
participating resource. Faulty and malicious
behaviour must be detected.

A typical XW platform is composed of one

coordinator and several workers (remote resources).
The coordinator is a three-tier layer allowing
connection between clients and workers through a
coordination service. This layer is designed so as it
allows the mobility of clients and the volatility of
workers.

3.1 The coordinator

The coordinator is a three-tier architecture which
adds a middle tier between client and workers. There is
no task direct submission/result transfer between clients
and workers. The coordinator accepts task requests
coming from several clients, distributes the tasks to the
workers according to a scheduling policy, transfers
application code to workers if necessary, supervises
task execution on workers, detect worker
crash/disconnection, re-launches crashed tasks on any

other available worker, collects and store task results to
client upon request.

The coordinator is composed of three services: the
repository, the scheduler and the result server. The
repository is an advertisement services. It publishes
services (client applications) to make them available
through standard communication ports (Java RMI,
XML-RPC). These applications/services are first read
from a database and inserted into the task set. The
scheduler is the service factory. It instantiates
applications and manages their life cycle. It starts them
on workers (a task is an instantiation of service or
application), stops them as expected and corrects faults
(if any) by finding available workers to re-launch them.
Finally the result server collects results as they are
provided by workers.

3.2 Workers

The worker architecture includes four components:

the task pool, the execution thread, the communication
manager and the activity monitor. The activity monitor
controls whether some computations could take place
in the hosting machine regarding some parameters
determined by the worker configuration (% CPU idle,
mouse/keyboard activity, etc.). The tasks pool (worker
central point) is managed by a producer/consumer
protocol between the communication manager and the
execution thread. Each task should be in one of the
three states: ready to be computed, running or saving.
The first state concerns downloaded tasks, correctly
inserted into the pool. The second state is for tasks
being computed. The last state corresponds to tasks
which need to upload result file to the result server.
The communication manager ensures communication
with the coordinator; it downloads task files (binaries
and input data) and upload results, if any. When
download completes, the task is inserted into the task
pool. The execution thread extracts the first available
task from the pool, recreates the task environment as
provided by the client (binary code, input data,
directories structure, etc.), writes on disk the task
status, starts computation and waits for the task to
complete. When the task completes, it creates the
results file which includes standard output and updates
task status on disk. The execution thread finally marks
the task state as completed, allowing the
communication manager to send results. It then expects
notification from the result server to send again in case
the upload went wrong or definitively remove the task.

In its original version, XW applications are
standalone modules. The system does not support any
interaction between different modules. However,

developers can use asynchronous Remote Process Call
called XWRPC in order to distribute (parallelize) their
applications [11].

4. XtremWeb-CH

XtremWeb-CH (XWCH) is an upgraded version of
XW. The aim of XWCH is to build an effective Peer-
To-Peer LSDS which satisfies the four criteria detailed
in paragraph 2. XWCH adds four functionalities to XW:
1. Automatic execution of Parallel and Distributed

Applications (PDA)
2. Automatic detection of the smallest granularity that

can be implemented according to the number of
available workers.

3. Support of direct communication between workers.
4. XWCH provides a set of monitoring tools allowing

users to visualize the execution of their
applications.

4.1 Automatic execution of Parallel and
Distributed Applications (PDA)

In XW, jobs submitted to the system are standalone.

In case of PDA, communicating modules are executed
as separate jobs (tasks). It’s the user responsibility to
link manually output and input data of two
communicating tasks. Contrary to this approach,
XWCH supports the execution of a whole PDA. A PDA
is a set of communicating modules that can be
represented by a data flow graph where nodes are
modules and edges are communications inter-modules
(Figure 1). According to the semantics of the PDA,
modules can have the same or different codes. In figure
1, modules having the same shape have the same code.

Figure 1. Data flow graph representing a PDA
application

The data flow graph is represented by an XML file

whose syntax is detailed in Figure 2.
An application is composed of several modules

(Module element in Figure 2). A module is represented
by a source code and can have several binary versions
(Binary element in Figure 2). A task is an instantiation
of one module. Thus, several tasks can correspond to

A
B

B
C

the same module. The maximum number of tasks for a
given module is fixed by the Restriction element. This
element fixes the smallest granularity of the application
during its execution. It can be extracted from the
“state” of the platform just before the execution time
(see paragraph 4.2 for details). It represents the
maximum number of workers that can be used to
execute the corresponding module.

Precedence rules between tasks are described by
Task elements. A task can have several inputs (Input
element in Figure 2) but only one output (Output
element in Figure 2). The element cmdLine indicates
arguments/parameters used by the task. This field is
optional.

Figure 2. XML syntax of a PDA application

A PDA is thus, represented by:
- its XML file representing its data flow graph,
- the binary codes of its modules. Let’s recall that

one module can have several binary codes,
- its input data.

These files are compressed into one file.
XWCH can be perceived as a layer on XW that takes

into account the communications between tasks
belonging to the same PDA. In this context, a task
belonging to a given PDA is considered by XW as a
standalone application.

A client can submit his PDA to XWCH by uploading
its corresponding compressed file. In addition to the
three states ready, running and saving, XWCH adds a
fourth state: blocked. Tasks of a given PDA are initially
blocked and cannot be assigned to any worker, since
their input data are not available. Only tasks whose
input data are given by the user are in ready state and
can be allocated to workers. When they are assigned to
a worker, they move from ready to running state. Input
data needed by blocked tasks are progressively
provided by running tasks which finish their
processing. XWCH detects the blocked tasks which can
pass to ready state and can, thus, be assigned by the
scheduler to a worker.

4.2 Granularity of the PDA

In parallel computing, the selected size of the grain

(granularity) depends on the application and the
number of processors in the target parallel machine.
This number is generally known and fixed during the
execution. Thus, the granularity is fixed during the
development of the application. In our context, the
computer is the network, workers are free to join and/or
leave the GC platform whenever they want. The exact
number of available workers is known just before the
execution and could be varied during the execution. As
a consequence, the granularity should be fixed only at
execution time. The client indicates, in the XML file
describing his PDA (Restriction element), the number
of workers each module of the PDA can use during its
execution (max_workers). This number depends on the
semantic of the application and should be provided by
the client. To deploy an application on XWCH, three
steps are required:
1. Discovery step: Search for a set of available

workers to execute the PDA. The number of
workers should be less or equal to max_workers.

2. XML generation step: this step consists on
generating the XML file of the application to be
deployed according to the number of available
workers. In general, it’s the user responsibility to
generate this file. However, for a specific family of
applications, this file can be automatically
generated according to the XWCH platform status:
number of available workers, network status, etc.
Thus, the number of tasks is fixed just before the
execution. In another words, granularity of the
parallelization is dynamically fixed according to the
number of available workers and the state of the
targeted P2P platform.

3. Execution step: the application is launched on the
XWCH platform.

4.3 Direct communication

Two versions of XWCH were developed. The first,
called XWCH-sMs, manages inter-tasks
communications in a centralized way. The second
version, called XWCH-p2p, allows a direct
communication between workers without passing by
the coordinator

In the XWCH-sMs (slave-Master-slave) version,
workers cannot directly communicate, they cannot
"see" each other. Any communications between tasks
take place through the coordinator. This architecture
overloads the coordinator and could affect the
application performances.

In order to cure the gaps of the XWCH-sMs version,
it is necessary to have direct worker-to-worker
communications. In other term, the worker executing
module A (called worker A in Figure 3) must be able to
directly send its results to workers B and C.

Figure 3. Execution of a PDA on a XWCH-p2p
platform

The XWCH coordinator can, thus, allocate tasks B

and C to two available workers. Every worker receives
the binary code of the module it will execute and the
necessary information relating to its input file (IP
address, path and name of the input file). Data transfer
between workers A and B (resp. C) can thus take place
on the initiative of the receiver. This version called
XWCH-p2p has two main advantages:
1. it discharges the coordinator from data routing and,
2. it avoids the duplication of communications.

In this context, the coordinator keeps only the task
scheduling management. XWCH-p2p tends towards the
Peer-To-Peer concept which one of its principles is to
avoid any centralized control.

Direct communication can only take place when the
workers can “see” each other. Otherwise (one of the
two workers is protected by a firewall or by a NAT
address), direct communication is impossible. In this
case, it is necessary to pass by an intermediary (XWCH
coordinator for example). This scenario is similar to
XWCH-sMs version. However, to avoid overloading
the coordinator, one possible solution consists on
installing a relay machine, called "data collector"
which acts as an intermediary. This machine is used by
worker A (in our example) to store its results and by
workers B and C to seek their data. “Data collector”
machine is chosen by the user when launching the
application. This machine must be reachable by all
workers contributing to the execution of the concerned
application.

4.4 Monitoring tools

XWCH proposes a package of tools allowing the

user to debug and/or visualize the progress of his PDA
execution:
- Tasks allocation: The user can “spy” the execution

of his PDA. He can follow the allocation of tasks
(which worker is executing which task)

- Progress of tasks execution: When executing, every
task can send progress report to its worker
informing it about its state. Currently, this progress
report is expressed in term of percentage of
execution. 60% means that the task has finished
60% of its execution.

- Step by step execution: It’s a debugging mode.
When activated, every task sends messages to the
worker. These messages are inserted in the source
code by the developer.

5. Experimental measures

The purpose of this section is to assess the
performances of XWCH in a real case of a CPU time
consuming application. XWCH was evaluated in the
case of a phylogenetic application. Phylogenetic is the
science which deals with the relationships that could
exist between living organisms, it reconstructs the
pattern of events that have led to “the distribution and
diversity of life”. These relationships are extracted
from the Desoxyribo Nucleic Acid (DNA) sequences of
species. A phylogenetic tree, also called life tree, is
then built to show relationship among species. This tree
shows the chronological succession of new species
(and/or new characters) appearances.

In a medical context, the generation of a life tree for
a family of microbes is particularly useful to trace the
changes accumulated in their genomes. These changes
are due, inter-alia, to the "reaction" of the virus to the
treatments (antibiotic for example).

A multitude of applications aiming at building
phylogenetic trees are used by the scientific
community. These applications are known to be CPU
time consuming, their complexity is exponential (NP-
difficult problem). Approximate and heuristic methods
do not solve the problem since their complexity
remains polynomial with an order greater than 5: O(nm)
with m > 5. Parallelisation of these methods could be
useful in order to reduce the response time of these
applications.

The Tree Puzzle method [12] [13] is one of the
heuristic techniques used for the generation of
phylogenetic trees. [14] and [15] propose a parallel
implementation of the Tree Puzzle method written in C

Signal (3)

XtremWeb-CH
coordinator

Client
Request (1)

Result (6)

Workers

Accept (4)

Resultl (5)

Distributed and
Parallel

Accept (2)

Accept (4’)
Result (5’) A

B

C

A

B

C

and using Message Passing Interface (MPI)
communication routines. This implementation,
particularly optimized for a cluster of computers, was
adapted to our XWCH platform. MPI routines were
replaced by file transfers. However, no code
optimization was done. Our goal is not to develop an
optimized version of the Tree Puzzle algorithm for an
XWCH platform, but to validate choices retained within
the framework of the XWCH project.

The input data of Tree Puzzle algorithm is
represented by the DNA sequences of the species to be
classified. A DNA sequence is modeled by a chain of
few hundreds of characters. The algorithm generates a
structure representing the phylogenetic tree of the
species given in the entry. The Tree Puzzle algorithm is
not detailed in this document. However, its structure,
expressed in term of tasks (data flow graph) is given in
Figure 4. This structure is common to several families
of PDA. An XML file generator was developed. The
goal is to automatically generate this file according to
the number of available workers and structure of
exchanged data between tasks.

1st stage 2nd stage

Figure 4. Structure of the Tree Puzzle algorithm

Tasks belonging to the 1st stage (resp. 2nd stage)

have the same code, their number is equal to N – 3
where N is the number of DNA sequences. The number
of tasks belonging to the 2nd stage is variable and can
be chosen by the programmer, but can never exceed N.

Tree Puzzle application was executed on XWCH
(XWCH-p2p and XWCH-sMs versions) with two jets of
input data: 64 (128 tasks) and 128 sequences of DNA
(256 tasks). XWCH was installed on more than 100
heterogeneous PC (Pentium 2, 3, 4) with Windows and
Linux operating systems distributed between two sites:
University of Applied Sciences (Geneva-Switzerland)
and Polytechnic School of Lille (France).

The 2nd stage of the application consumes 70% of
the processing time. For this reason, tests focused on
varying the number of tasks at this stage. In figure 5
(resp. 6), Tree Puzzle application was executed by
varying the number of tasks of the 2nd stage: 8, 16, 32

and 64 (resp. 32, 64 and 128). When the number of
DNA sequences is equal to 128 (Figure 6), and with a
number of sequences equal to 8 (resp. 16), the
execution time is estimated to 7 days (resp. 3 days).

Number of tasks (1st step) = 64

0
1000
2000
3000
4000

0 20 40 60 80

Number of tasks (2nd step)

Ti
m

e[
s]

Figure 5. Execution time of tree puzzle algorithm.

Number of sequences = 64

0
10000
20000
30000
40000
50000

0 50 100 150

Ti
m

e[
s]

Number of tasks (1st step) = 128

Number of tasks (2nd step)

Figure 6. Execution time of tree puzzle algorithm.

Number of sequences = 128

During the execution, some of the available workers

were not “exploited” by the application. Indeed, the
number of tasks in the 2nd stage never exceeds that of
workers. On the other hand, during the execution of the
1st stage, task allocation process is faster than the
execution itself. Consequently, the scheduler assigns 1st
stage tasks to workers having already executed the
same code (workers already having the binary code).

The objective of these measurements was to validate
our approach. In this context, no optimization was
brought to the parallel Tree Puzzle algorithm.
However, several improvements could be carried out in
order to adapt the algorithm to the targeted platform.
Indeed, a specific parallelization of the Tree Puzzle
algorithm adapted to XWCH platform could decrease
the response time of the application.

Figure 7 shows execution times of another
parallel/distributed application (parallel mergesort
algorithm) when executed on XWCH-sMs and XWCH-
p2p versions. Indeed, communication costs of this

application are more important than those generated by
the Tree Puzzle algorithm.

60
120

248

780

1750

31 60
120

376

830

0

200

400

600

800

1000

1200

1400

1600

1800

2000

64 128 256 512 1024

Number of tasks

Ti
m

e
[s

]

 XWCH-p2p

 XWCH-sMs

Figure 7. XWCH-sMs vs. XWCH-p2p

These Measurements (Figure 7) are foreseeable:

XWCH-sMs version consumes twice more
communications than the XWCH-p2p version.

Figure 8 shows the output traffic (expressed in term
of bits) generated by XWCH coordinator during 4 hours
and 30 minutes. During this period, two applications
were executed, they correspond to the two peaks of
figure 8 (phases II and V). A traffic analyser was used
to obtain these measurements. The x-axis (x) represents
time while the co-ordinates (y) represent number of bits
generated by the coordinator.

I II III IV V VI

Figure 8. Output traffic generated by XWCH
coordinator

Phase I corresponds to the launching of 5 workers.
The traffic generated by the coordinator corresponds to
the replies it generates following the “work request”
calls sent by the workers. During this phase, no
application is deployed. Phase II corresponds to the
launching of a PDA: a sort application based on
mergesort algorithm. This traffic corresponds to data
and binary codes transmitted by coordinator towards
workers. Phase III is similar to phase I, it corresponds
to the “work request” calls sent by the 5 workers after
they end their execution. Phase IV corresponds to the
launching of 24 workers.

Phase V corresponds to the execution of the same
application with a larger size of input data. The peak at

the beginning of this phase shows the transmission of
binary codes and data from coordinator to workers.
When workers execute tasks, the coordinator outgoing
traffic is null. Indeed, communications take place
directly between the workers. This phenomenon does
not appear in the first execution because of the short
execution time of the application. Phase VI is similar to
phase IV.

These measurements show that the average output
traffic generated by the coordinator is equal to 3.24
kbits/s by worker.

6. Conclusion

This paper presents a new GC environment
(XtremWeb-CH), used for the execution of high
performance applications on a highly heterogeneous
distributed environment. XWCH can support direct
communications between workers, without passing by
the coordinator. The execution of a testbed application
(generation of phylogenetic trees) has demonstrated the
feasibility of our solution. Other experiments are in
progress to evaluate XWCH in other High Performance
applications cases.

One of the ideas that could constitute the
perspectives of this work is to extend the XWCH-p2p
version in order to converge towards a true P2P system
which one of its principles is to eliminate any
centralized control. The current version of XWCH
allows the decentralization of communications between
workers. The next step consists on designing a
distributed scheduler, executed by workers. This
scheduler should avoid allocating communicating tasks
to workers that can not reach each other. Although not
specifically discussed, this approach offers a strong
basis onto which we could develop distributed and
dynamic scheduler and should confirm and reinforce
the tendency detailed in section 2.

7. References

[1]: http://setiathome.berkeley.edu/

[2]: http://www.entropia.com/

[3]: http://www.ud.com/home.htm

[4]: http://www.parabon.com/

[5]: Gilles Fedak et al. XtremWeb : A Generic Global
Computing System. CCGRID2001, workshop on Global
Computing on Personal Devices. Brisbane, Australia. May
2001. http://xtremweb.net

[6]: KAN G., Peer-to-Peer: harnessing the power of
disruptive technologies, Chapter Gnutella, O’Reilly, Mars
2001.
[7]: Ian Clarke. A Distributed Decentralised Information
Storage and Retrieval System. Division of Informatics. Univ.
of Edinburgh. 1999. http://freenet.sourceforge.net/

[8]: Babin, G; P. Kropf; and H. Unger. A two-level
communication protocol for a Web Operating System: WOS.
Vasteras, Sweden, Aug 1998. In IEEE Euromicro Workshop
on Network Computing, 939–944.

[9]: I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid
Services for Distributed System Integration. IEEE Computer,
pages 37-46, June 2002.

[10]: Franck Cappello et al. Computing on Large Scale
Distributed Systems: XtremWeb Architecture, Programming

Models, Security, Tests and Convergence with Grid. In
Future Generation Computer Science (FGCS), 2004.
[11]: Samir Djilali. P2P-RPC: Programming Scientific
Applications on Peer-to-Peer Systems with Remote
Procedure Call. GP2PC2003 colocated with IEEE/ACM
CCGRID2003. Tokyo Japan, May 2003.

[12]:http://biowulf.nih.gov/apps/puzzle/tree-puzzle-doc.html

[13]: http://www.tree-puzzle.de/

[14]: http://www.dkfz.de/tbi/tree-puzzle/

[15]: Heiko A. Schmidt, Phylogenetic Trees from Large
Datasets, 'Ph.D.' in Computer Science, Düsseldorf, Germany,
2003.

