
A Scheduling algorithm for High Performance Peer-To-
Peer Platform

Nabil Abdennadher1, Régis Boesch1

1 University of Applied Sicences, 4 Rue Prairie, 1202,Geneva, Switzerland.

{nabil.abdennadher, regis.boesch}@hesge.ch

Abstract. This paper describes a scheduling algorithm used to execute parallel
and distributed applications on a Global Computing (GC) environment, called
XtremWeb-CH (XWCH). XWCH is an improved version of a GC tool called
XtremWeb (XW). XWCH is an enrichment of XW allowing it to match P2P
concepts: distributed scheduling, distributed communication and development
of symmetrical models. The scheduling algorithm takes into account the
heterogeneity and volatility of nodes. This paper illustrates the performance of
XWCH in a real CPU time consuming application.

Keywords: Peer-To-Peer, High Performance Computing, Scheduling
Algorithm.

1. Introduction

High Performance Computing (HPC) landscape has radically changed since the end
of the last decade. Based initially on the use of parallel and vectorial computers
equipped with specific development environments, computing power consumers are
adopting a new approach which takes advantage of the Internet development. The
idea consists on deploying High Performance applications on anonymous connected
computers by using their available resources. Indeed, the challenge today is to extract,
at low cost, a reasonable computing power from a widely distributed platform (by
executing interactive applications) rather than extracting the maximum power from a
local supercomputer (by executing batch applications). In another words, the majority
of the world's computing power is no longer in supercomputer centers and
institutional machine rooms. Instead, it is now distributed in a hundred of thousands
of personal computers all over the world. This concept is known as Global Computing
(GC).

The majority of GC projects adopted a centralized structure based on a
Master/Slave Architecture: SETI@home [1], Entropia [2], United Devices [3],
Parabon [4], XtremWeb [5], etc. A natural extension of the GC consists on
distributing the "decisional degree" of the master in order to avoid any form of
centralization. Thus, architectures such as Clients/Servers and Master/Slaves would
be withdrawn. This concept, known as Peer-To-Peer (P2P), was successfully used to
share and exchange files between computers connected to Internet. The most known
projects are Gnutella [6] and Freenet [7]. Indeed, file sharing is well adapted to this
model. However, the use of P2P in the field of HPC raises several theoretical and
practical problems. Dynamic scheduling algorithms for parallel/distributed

applications can not be easily distributed. P2P Computing also goes against the
policies and safety techniques largely used nowadays on Internet: Firewalls, NAT
addresses, etc. The objective of these techniques is to protect resources connected to
Internet from any voluntary or involuntary abusive use. Internet is then partitioned in
several protected zones which are unable to cooperate mutually. Problems related to
the development of a true P2P environment for HPC needs remain open.

This document describes a GC environment, called XtremWeb-CH (XWCH),
which converges towards a P2P system. XWCH is an improved version of a GC tool
called XtremWeb (XW). XWCH tries to enrich XW in order to match P2P concept:
distributed scheduling, distributed communication, development of symmetrical
models, etc. In P2P systems, nodes are assumed to be customers and servers at the
same time. Although it is utopian, this idea is retained as guide line in the XWCH
project.

This document is organized as follows: section 2 presents the features that should
be satisfied by a GC platform in order to be considered as a real P2P system. Section
3 introduces the XW tool in its original version. Section 4 details the new concepts
XWCH introduces compared to XW. It also describes the features of the scheduling
algorithm supported by XWCH. Section 5 presents the experiments carried out in
order to evaluate XWCH. Lastly, the section 6 gives some perspectives of this
research.

2. What is a real Peer-To-Peer system?

A true P2P environment should satisfy three criteria:
- Platform heterogeneity: The system should support heterogeneous architectures

(hardware) and platforms (software and operating systems). Since these resources
are anonymous, the system should take into account all administration policies
implemented by local administrators.

- Natural scalability: A P2P system should support a huge number of resources. It
should be scalable by itself and not by “doping”. For that purpose, the
performance of the system should be provided by its distributed structure:
distributed algorithms, distributed warehouses, distributed scheduling algorithms,
etc. This structure should allow open access and search procedures. The search
engine should take into account the dynamic nature of the network. The system
should be based on a demand-driven computation model: users' queries are only
processed when needed and prior results are stored in warehouses, where they can
be accessed later on.

- Symmetric view: a node belonging to a P2P platform should be server and client at
the same time.

File sharing systems like Gnutella and Freenet satisfy all these criteria. High

performance GC environments such as XtremWeb, Seti@home, Entropia do not
satisfy any of these criteria. They are based on a non symmetric view (Master/Slaves).
They are not scalable since the master is overloaded when the number of slaves

increases. The only HP oriented tool which seems to satisfy all these constraints is
WOS (Web Operating System) [8]. Unfortunately, this tool remained in a purely
conceptual state and no prototype was born.

3. XtremWeb

XW is a GC research project carried out at Université d’Orsay (France). Like other
Large Scale Distributed Systems (LSDS), XW platform uses remote resources (pocket
computers, PCs, workstations, servers) connected to Internet to execute a specific
application (client). The aim of XW is to investigate how a LSDS can be turned into a
High Performance Parallel Computer. XW belongs to the more general context of Grid
research and follows the standardisation effort towards Grid Services [9]. XW satisfies
the three main constraints imposed by any Large Scale Distributed Environment:
volatility, heterogeneity and security.

Security is particularly difficult in the context of LSDS because it’s impossible to
trust hundreds of thousands resources. Three main security problems, linked to GC
and P2P systems, are considered in the context of XW project:
- Data integrity/privacy: This problem could be resolved by applying the well

known solutions of encryption, public/private keys, etc.
- Protection of participating resources: No aggressive application should be able to

corrupt data or system of any participating resource. Sandboxing is the well
known technique to resolve this problem. The idea consists on filtering the system
calls which appear to be the main security holes of recent operating systems. [10]
explains how does XW use the sandboxing to resolve the resource protection
problem.

- Result certification procedure: This problem is linked to the lack of trust regarding
the result provided by the remote resource. Indeed, there is no way to control
precisely what happens on a participating resource. Faulty and malicious
behaviour must be detected.

A typical XW platform is composed of one coordinator and several workers

(remote resources). The coordinator is a three-tier layer allowing connection between
clients and workers through a coordination service. This layer is designed so as it
allows the mobility of clients and the volatility of workers.

3.1 The coordinator

The coordinator is a three-tier architecture which adds a middle tier between client
and workers. There is no task direct submission/result transfer between clients and
workers. The coordinator accepts task requests coming from several clients,
distributes the tasks to the workers according to a scheduling policy, transfers
application code to workers if necessary, supervises task execution on workers, detect
worker crash/disconnection, re-launches crashed tasks on any other available worker,
collects and store task results to client upon request.

The coordinator is composed of three services: the repository, the scheduler and
the result server. The repository is an advertisement services. It publishes services
(client applications) to make them available through standard communication ports
(Java RMI, XML-RPC). These applications/services are first read from a database and
inserted into the task set. The scheduler is the service factory. It instantiates
applications and manages their life cycle. It starts them on workers (a task is an
instantiation of service or application), stops them as expected and corrects faults (if
any) by finding available workers to re-launch them. Finally the result server collects
results as they are provided by workers.

3.2 Workers

The worker architecture includes four components: the task pool, the execution
thread, the communication manager and the activity monitor. The activity monitor
controls whether some computations could take place in the hosting machine
regarding parameters such as CPU idle time and mouse/keyboard activity. The tasks
pool (worker central point) is managed by a producer/consumer protocol between the
communication manager and the execution thread. Each task should be in one of the
three states: ready to be computed, running or saving. The first state concerns
downloaded tasks, correctly inserted into the pool. The second state is for tasks being
computed. The last state corresponds to tasks which need to upload result file to the
coordinator. The communication manager ensures communication with the
coordinator; it downloads task files (binaries and input data) and upload results, if
any. When download completes, the task is inserted into the task pool. The execution
thread extracts the first available task from the pool, recreates the task environment as
provided by the client (binary code, input data, directories structure, etc.), starts
computation and waits for the task to complete. When the task completes, the
execution thread finally marks the task state as completed, allowing the
communication manager to send results to the coordinator.

In its original version, XW applications are standalone modules. The system does
not support any interaction between different tasks. However, developers can use
asynchronous Remote Process Call called XWRPC in order to distribute (parallelize)
their applications [11].

4. XtremWeb-CH

XtremWeb-CH (XWCH) is an upgraded version of XW. The aim of XWCH is to build
an effective Peer-To-Peer LSDS which satisfies the three criteria detailed in section 2.
XWCH adds four functionalities to XW:
1. Automatic execution of Parallel and Distributed Applications.
2. Automatic detection of the optimal granularity that can be implemented according

to the number of available workers and scheduling of tasks.
3. Support of direct communication between workers.
4. XWCH provides a set of monitoring tools allowing users to visualize the execution

of their applications.

4.1 Automatic execution of Parallel and Distributed Applications

In XW, jobs submitted to the system are standalone. In case of parallel/distributed
applications, communicating modules are executed as separate jobs (tasks). It’s the
user responsibility to link manually output and input data of two communicating
tasks. Contrary to this approach, XWCH supports the execution of a whole
parallel/distributed application represented by is a set of communicating tasks. This
application is modeled by a data flow graph where nodes are tasks and edges are
communications inter-tasks (Fig. 1). Tasks can have the same or different codes. In
Fig. 1, tasks having the same shape have the same code.

Fig. 1. Data flow graph representing a parallel/distributed application

The data flow graph is represented by an XML file whose syntax is detailed in Fig.
2.

An application is composed of several modules (Module element in Fig. 2). A
module is represented by a source code and can have several binary versions (Binary
element in Fig. 2). A task is an instantiation of one module. Thus, several tasks can
correspond to the same module.

Precedence rules between tasks are described by Task elements. A task can have
several inputs (Input element in Fig. 2) but only one output (Output element in Fig.
2). The element cmdLine indicates arguments/parameters used by the task. This field
is optional.

Fig. 2. XML syntax of a parallel/distributed application

A parallel/distributed application is thus, represented by:
- its XML file representing its data flow graph,
- the binary codes of its modules. Let’s recall that one module can have several

binary codes,

A
B

B
C

- its input data.
These files are compressed into one file.
XWCH can be perceived as a layer on XW that takes into account the

communications between tasks belonging to the same parallel/distributed application.
In this context, a task belonging to a given parallel/distributed application is
considered by XW as a standalone application.

A client can submit his application to XWCH by uploading its corresponding
compressed file. In addition to the three states that a task can have: ready, running
and saving, XWCH adds a fourth state: blocked. Tasks of a given application are
initially blocked and cannot be assigned to any worker, since their input data are not
available. Only tasks whose input data are given by the user are in ready state and can
be allocated to workers. When a task is assigned to a worker, it moves from ready to
running state. Input data needed by blocked tasks are progressively provided by
running tasks which finish their processing. XWCH detects the blocked tasks which
can pass to ready state and can, thus, be assigned to a worker.

4.2 Granularity and scheduling

In parallel computing, the grain’s size (granularity) depends on the application and the
number of processors in the target parallel machine. This number is generally known
and fixed before the execution. Thus, the granularity is fixed during the development
of the application. In our context, the computer is the network, workers are free to
join and/or leave the GC platform whenever they want. The exact number of available
workers is known just before the execution and could be varied during the execution.
As a consequence, the best granularity can not be fixed before execution time. This
section describes how XWCH optimize the granularity of tasks and how these tasks
are scheduled during execution.

Data flow graph representing an application comprises generally a set of stages
{Si}. A stage Si is represented by a set of tasks having the same source code (module
in the XML file) and can be executed in parallel on different workers. The precedence
rules between two stages Si and Si+1 depends on the application. Tasks belonging to
the same stage have no precedence rules. They are fed with different data and are
executed according to the Single Program Multiple Data (SPMD) model. Thus, every
stage is responsible of processing a “quantity” of data noted Qi. The number of tasks
belonging to stage Si depends also on application but could be fixed according to the
number of workers.

Fig. 3 and 4 show two kinds of parallel/distributed applications experimented on
XWCH.

Si-2 Si-1 Si Si+1 Si+2

Fig. 3. Phylogenetic applications

In Fig. 3, odd stages contain one task while even stages contain a variable number

of tasks. This means that odd stages concentrate results of even stages before sending
them to the next stage.

 Si-1 Si Si+1

Fig. 4. Numerical application

In Fig. 4, every task of a stage Si sends its result to all tasks of stage Si+1 (multicast
operation).

To deploy an application on XWCH, three steps are required:
Discovery step: This step consists of searching for a set of available workers W to

execute the application (or one stage of the application). The output of this step is a
set of workers W = {(wj, pj)} where pj is the performance of wj. pj can be expressed in
term of CPU performance, main memory size, network bandwidth, etc.

Configuration step: Assuming that |W| = n, this step dispatches the quantity of data
to process by a stage Si (Q) among the n tasks which compose the given stage. A task
tk, supposed to be executed by worker wj (with performance pj), is assigned a quantity
of data qk function of pj. qk is called the workload of tk. The more the worker is
powerful, the bigger is qk. At this point, the system behaves as if the n workers are
fully monitored by the coordinator. In another term, granularity of the parallelization
and load balancing are fixed according to the number of available workers and the
state of the targeted P2P platform.

The output of the configuration step for a given stage S of a given application is a
set of couples {(qk, pj)} where pj is the performance of the worker that will process the
task having the workload qk.

The XML file, describing the application, is automatically generated at the end of
this step.

Execution step: Configuration step assumes that available workers W are fixed and
controlled by the coordinator. However, during execution, tasks allocation is not
totally controlled by the coordinator. Indeed, tasks are allocated to workers when the
coordinator receives work requests from workers. At this point, it is worth going into
some details:
- A work request is a remote procedure called by the workers and executed by the

coordinator.
- A work request, called by a worker, indicates its current performance p.
- One or several workers selected during discovery step can disappear during

execution step.
- One or several new workers can connect and start to send work requests after

discovery step.
During execution, the coordinator manages a set of tasks T = {tk} belonging to

different applications. Every task tk has its workload qk.
Ideally, tasks belonging to a given stage of a given task are executed in parallel on

workers selected during configuration step (or new workers with higher performance).
Since workers are volatiles, a work request received by the coordinator is not
necessarily sent by one of the workers selected during the configuration step.
Moreover, arrivals of work requests are unpredictable. For that reasons, the
scheduling policy of XWCH is the following: when receiving a work request from a
worker w having performance p, the task t allocated to w is the one whose workload q
is closer to p. Thus, the scheduler of XWCH allocates task t of T to w if:

|q - p | = min (|qk - pw|) for all tk belonging to T.

The scheduling algorithm is executed inside the work request call. According to
this algorithm, a given task is not executed unless an appropriate worker calls a work
request. This means that a task could stay indefinitely in a ready state and never
assigned to a worker, the application is blocked. In order to avoid this situation, a
deadline is affected to each stage of the application: if a task spends in a ready state a
time higher than its deadline, it is automatically allocated to the first free worker. A
small value of the deadline, means that the user prefers allocate tasks to workers as
soon as possible. In this case, tasks could be assigned to a non appropriate worker. A
high value of the deadline means that the user prefers wait and allocate tasks to the
best appropriate worker. In this case, the task could be blocked indefinitely.

4.3 Direct communication

Two versions of XWCH were developed. The first, called XWCH-sMs, manages inter-
tasks communications in a centralized way. The second version, called XWCH-p2p,
allows a direct communication between workers without passing by the coordinator

In the XWCH-sMs (slave-Master-slave) version, workers cannot directly
communicate, they cannot "see" each other. Any communications between tasks take
place through the coordinator. This architecture overloads the coordinator and could
affect the application performances.

In order to cure the gaps of the XWCH-sMs version, it is necessary to have direct
worker-to-worker communications. In other term, the worker executing module A
(called worker A in Fig. 5) must be able to directly send its results to workers B and
C.

The XWCH coordinator can, thus, allocate tasks B and C to two available workers.
Every worker receives the binary code of the module it will execute and the necessary
information relating to its input file (IP address, path and name of the input file). Data
transfer between workers A and B (resp. C) can thus take place on the initiative of the
receiver.

This version called XWCH-p2p has two main advantages:
1. it discharges the coordinator from data routing.
2. it avoids the duplication of communications.

In this context, the coordinator keeps only the responsibility of tasks scheduling.
XWCH-p2p tends towards the Peer-To-Peer concept which one of its principles is to
avoid any centralized control.

Fig. 5. Execution of an application on a XWCH-p2p platform

Direct communication can only take place when the workers can “see” each other.

Otherwise (one of the two workers is protected by a firewall or by a NAT address),
direct communication is impossible. In this case, it is necessary to pass by an
intermediary (XWCH coordinator for example). This scenario is similar to XWCH-
sMs version. However, to avoid overloading the coordinator, one possible solution
consists on installing a relay machine, called "data collector" which acts as an
intermediary. This machine is used by worker A (in our example) to store its results
and by workers B and C to seek their data. “Data collector” machine is chosen by the
user when launching the application. This machine must be reachable by all workers
contributing to the execution of the concerned application.

Signal (3)

XtremWeb-CH
coordinator

Client

Service Request (1)

Result (6)

Workers

Work request (4)

Signal (5)

Distributed and
Parallel

A

B

C

A

B

C

Work request (2)

Work request (4’)
Signal (5’)

4.4 Monitoring tools

XWCH proposes a package of tools allowing the user to debug and/or visualize the
progression of the execution of their applications:
- Tasks allocation: The user can “spy” the execution of his application. He can

follow the allocation of tasks (which worker is executing which task)
- Progression of tasks execution: When executing, every task can send progression

report to its worker informing it about its state. Currently, this progression report
is expressed in term of percentage of execution.

- Step by step execution: It’s a debugging mode. When activated, every task sends
messages to the worker. These messages are inserted in the source code by the
developer.

5. Experimental measures

The purpose of this section is to assess the performances of XWCH in a real case of a
CPU time consuming application. XWCH was evaluated in the case of a phylogenetic
application: PHYLIP (the PHYLogeny Inference Package) package [12]. The
parallelized version of PHYLIP is used by the Laboratory of virology at the Geneva
Hospital in order to generate phylogenetic tree related to HIV virus.

Phylogenetic is the science which deals with the relationships that could exist
between living organisms. It reconstructs the pattern of events that have led to “the
distribution and diversity of life”. These relationships are extracted from comparing
Desoxyribo Nucleic Acid (DNA) sequences of species. An evolutionary tree, termed
life tree, is then built to show relationship among species. This tree shows the
chronological succession of new species (and/or new characters) appearances.

In a medical context, the generation of a life tree for a family of microbes is
particularly useful to trace the changes accumulated in their genomes. These changes
are due, inter-alia, to the "reaction" of the virus to the treatments.

A multitude of applications aiming at building evolutionary trees are used by the
scientific community [13] [14] [15] [16]. These applications are known to be CPU
time consuming, their complexity is exponential (NP-difficult problem). Approximate
and heuristic methods do not solve the problem since their complexity remains
polynomial with an order greater than 5: O(nm) with m > 5. Parallelization of these
methods could be useful in order to reduce the response time of these applications.

PHYLIP is a package of programs for inferring phylogenies (evolutionary trees). It
is the most widely-distributed phylogeny package. PHYLIP has been used to build the
largest number of published trees. It has been in distribution since 1980, and has over
15,000 registered users. PHYLIP was ported on XWCH platform.

An evolutionary tree is composed of several branches. Each branch is composed of
sub-branches and/or leaf nodes (sequences). Two sequences belonging to the same
branch are supposed to have the same ancestors. To construct the tree, the application
defines a “distance” between all pairs of sequences. Evolutionary tree is then
gradually built by sticking to the same branch, the pairs of sequences having the

smallest distance between them. Even if the concept is simple, PHYLIP is a CPU time
consuming application. This complexity is due to two factors:

1. Methods used to group sequences into branches are complex. As an example, the
Fitch program, one of the most used methods, takes two hours to execute on a
Pentium 4 (3 GHz) with 100 sequences.

2. The application constructs not only one tree from the origin data set, but a set of
trees generated from a large number of bootstrapped data sets (somewhere
between 100 and 1000 is usually adequate). These data are randomly generated
from origin data. The final (or consensus) tree is obtained by retaining groups that
occur as often as possible. If a group occurs in more than a fraction l of all the
input trees it will definitely appear in the consensus tree.

The application, as adapted to XWCH, is composed of 5 programs: Seqboot,
Dnadist, Fitch-Margoliash, Neighbor-Joining and Consensus.

- Seqboot is a general bootstrapping and data set translation tool. It is intended to
generate multiple data sets that are re-sampled versions of the input data set. It
involves creating a new data set by sampling N characters randomly with
replacement, so that the resulting data set has the same size as the original, but
some characters have been left out and others are duplicated.

- Dnadist uses sequences to compute a distance matrix. It computes a table of
similarity between the sequences. The distance, for each pair of species, estimates
the total branch length between the two species. Each distance that is calculated is
an estimate, from that particular pair of species, of the divergence time between
those two species.

- Fitch-Margoliash (FITCH) and Neighbor-Joining (NJ): These two programs
generate the evolutionary tree for a given data set. FITCH method is a time
consuming method and can not be applied to a large number of sequences.

- Consensus: This program constructs the consensus tree from the set of trees
generated from bootstrapped data sets.

The structure of the obtained parallel/distributed application is shown in Fig. 3.

The application, as developed, has two parameters (fed by the user):
- Set of DNA Sequences from species under investigation.
- Number of evolutionary tree to generate: This parameter represents the quantity of

data: Q. It’s used to produce multiple data sets from original DNA sequences by
bootstrap re-sampling. The higher is Q, the finest is the result.
Two versions of PHYLIP were deployed on XWCH:

- The first version (Version 1 in Fig.6) is composed of Q tasks in the stage
corresponding to the FITCH module. Each task processes one data (one tree)

- In the second version (Version 2 in Fig.6), the number of tasks and their workload
are processed as explained in paragraph 4.2.

Execution times consumed by the two versions are shown in Fig. 6. PHYLIP was

executed on an XWCH platform composed of more than 100 heterogeneous PC
(Pentium 2, 3, 4) with Windows and Linux operating systems.

50 sequences. 100 workers

0

5

10

15

20

25

0 200 400 600 800

Q : number of replications

Ti
m

e
(in

 m
in

)

Version 1
Version 2

Fig. 6. Execution times of PHYLIP

For both versions, XWCH insures that executing codes are transferred from

coordinator to workers only at the start of the execution: if the same task is re-
executed on the same worker, its code is not downloaded again. The difference of
execution times in Fig. 6 is due to the synchronization between the coordinator and
workers: When a worker ends the execution of one task it stores the results locally
and on the relay, generates a work request call to ask for a new job, and finally
generates a data request call to receive input data it needs.

6. Conclusion

This paper presents a new GC environment (XtremWeb-CH), used for the execution
of high performance applications on a highly heterogeneous distributed environment.
XWCH can support direct communications between workers, without passing by the
coordinator. A scheduling policy is proposed in order to minimize synchronization
between coordinator and workers and optimize load balancing of workers. The
porting of PHYLIP on XWCH has demonstrated the feasibility of our solution. Other
experiments are in progress to evaluate XWCH in other High Performance
applications cases.

The current version of XWCH allows the decentralization of communications
between workers. The next step consists on designing a distributed scheduler. This
scheduler shall avoid allocating communicating tasks to workers that can not reach
each other. This approach offers a strong basis for the development of distributed and
dynamic scheduler and could confirm and reinforce the tendency detailed in section 2.

7. References

1. http://setiathome.berkeley.edu/
2. http://www.entropia.com/
3. http://www.ud.com/home.htm
4. Parabon Computation, Inc: The Frontier Application. Programming Interface, Version 1.5.2.

2004 (www.parabon.com)
5. Gilles Fedak et al. XtremWeb : A Generic Global Computing System. CCGRID2001,

workshop on Global Computing on Personal Devices. Brisbane, Australia. May 2001.
http://xtremweb.net

6. KAN G., Peer-to-Peer: harnessing the power of disruptive technologies, Chapter Gnutella,
O’Reilly, Mars 2001.

7. Ian Clarke. A Distributed Decentralised Information Storage and Retrieval System. Division
of Informatics. Univ. of Edinburgh. 1999. http://freenet.sourceforge.net/

8. Babin, G; P. Kropf; and H. Unger. A two-level communication protocol for a Web Operating
System: WOS. Vasteras, Sweden, Aug 1998. In IEEE Euromicro Workshop on Network
Computing, 939–944.

9. I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid Services for Distributed System
Integration. IEEE Computer, pages 37-46, June 2002.

10.Franck Cappello et al. Computing on Large Scale Distributed Systems: XtremWeb
Architecture, Programming Models, Security, Tests and Convergence with Grid. In Future
Generation Computer Science (FGCS), 2004.

11.Samir Djilali. P2P-RPC: Programming Scientific Applications on Peer-to-Peer Systems with
Remote Procedure Call. GP2PC2003 colocated with IEEE/ACM CCGRID2003. Tokyo
Japan, May 2003.

12.http://www.phylip.com/
13.http://biowulf.nih.gov/apps/puzzle/tree-puzzle-doc.html
14.http://www.tree-puzzle.de/
15.http://www.dkfz.de/tbi/tree-puzzle/
16.Heiko A. Schmidt, Phylogenetic Trees from Large Datasets, 'Ph.D.' in Computer Science,

Düsseldorf, Germany, 2003.

