
Edge-to-Cloud Solutions for Self-Adaptive
Machine Learning-based IoT Applications

A Cost Comparison

Marco Emilio Poleggi, Nabil Abdennadher, Raoul Dupuis, and Francisco
Mendonça

ISC department
University of Applied Sciences and Arts, Western Switzerland

Geneva, Switzerland
{marco-emilio.poleggi, nabil.abdennadher, raoul.dupuis,

francisco.mendonça}@hesge.ch

Abstract. Large-scale IoT applications based on machine learning (ML)
demand both edge and cloud processing for, respectively, AI inference
and ML training tasks. Context-aware applications also need self-adaptive
intelligence which makes their architecture even more complex. Estimat-
ing the costs of operating such edge-to-cloud deployments is challenging.
To this purpose, we propose a reference service-oriented event-driven
system architecture for IoT/edge applications comprising a minimal set
of components, mapped on available cloud services. We then propose a
resource consumption model for estimating the cost of deploying and
running self-adaptive AI-assisted IoT applications on selected edge-to-
cloud platforms. The model is evaluated in two scenarios: Road Traffic
Management and Smart Grid. We finally provide some estimates show-
ing how the expenditure breakdown varies significantly depending on the
adopted platform: storage costs are dominant in Road Traffic Manage-
ment for all providers, whereas either messaging or edge management
costs may dominate the Smart Grid scenario, and, surprisingly, comput-
ing costs are almost negligible in all cases.

Keywords: Edge · Cloud · IoT · Cost Model · PaaS.

1 Introduction

Nowadays, the Cloud is being massively adopted for a plethora of applications,
many of which also need some components deployed at the Edge, in charge of
governing large-scale IoT sensor networks: we refer to these as edge-to-cloud IoT
deployments. A particular subclass of these IoT applications is based on machine
learning (ML) to accomplish inference tasks on data coming from IoT sensors:
traffic monitoring systems, environmental sensing, fleet management and asset
tracking, as well as smart grid appliances. Because of their distributed nature
over edge devices with constrained resources, these applications leverage the



2 M. E. Poleggi et al.

Cloud for (heavy, long-term) learning tasks, while exploiting edge devices for
(light, low-latency) inference tasks on data coming from nearby IoT sensors.

Many IoT applications also exhibit high context sensitivity, as their intelli-
gence has to cope with different physical settings, complex usage patterns as well
as varying meteorological conditions. All this demand “context-aware” solutions,
which, for optimized performance, would follow a “self-adaptive” paradigm, as il-
lustrated in Figure 1: an end-user application consumes the output of an edge de-
vice that processes data coming from some IoT sensors. An artificial intelligence-
based (AI) inference module is deployed on this edge device, which makes “pre-
dictions” on the sensing data: e.g., classify environmental sounds, recognize car
license plates, etc. The AI inference module is endowed with a machine learn-
ing model (MLM) specifically tailored to the application at hand and optimized
for the edge device. This MLM is built and trained in the Cloud, where an AI
learning module is deployed.

Such applications operate in the following way. During a bootstrap phase, a
raw dataset is fed to the Cloud where it is first labeled and then processed for
AI learning. That results in a first MLM which is deployed to the edge device.
Then, the system enters operation mode: a feedback loop enabling continuous
intelligence adaptation. The edge device autonomously processes IoT sensors’
data; two cases may occur:

a. The prediction is satisfying: application output is provided.
b. The prediction is not satisfying: no application output is provided; the re-

lated sensing input is uploaded to the Cloud as “low-performance” data.
These are labeled and fed for training to the AI learning module: a new
MLM is generated which is then redeployed to the edge device. The original
dataset is extended with the new labeled data.

Several commercial actors already offer edge-to-cloud solutions (platforms)
suitable for our scenario. Given the complexity of such three-tiered (IoT, Edge
and Cloud) architectures, estimating their operating costs is not trivial. In a
previous work of ours [3], we presented a cloud application placement tool: a
decision-support system that optimally selects a cloud provider for an appli-
cation, based on current prices fed to a resource consumption model (RCM).
With this paper, we go beyond the pure cloud application paradigm and pro-
vide a comparative study of edge-to-cloud platforms for self-adaptive machine
learning-based IoT applications. Indeed, we are interested in answering the spe-
cific question: how much does it cost to deploy and operate a generic ML-based
IoT application on a given platform?

For comparison purposes, we consider five platforms: three well-known that
employ proprietary solutions (Amazon AWS [1], Google Cloud [4] and Microsoft
Azure [8]) and two newcomers that are based on (mostly) open-source software
(SixSq Nuvla [11] and Balena [2]).

The rest of the paper is structured as follows. We review some related work
in Section 2. A detailed description of our use case is provided in Section 3 where
a reference system architecture is also proposed. Then, Section 4 presents our



Edge-to-Cloud Solutions: A Cost Comparison 3

Fig. 1. A self-adaptive ML-based edge-to-cloud application scenario (operation feed-
back loop).

RCM based on which we compare the cost of the different edge-to-cloud solutions
under study (Section 5). Finally, we draw our conclusions in Section 6.

2 Related work

Several research works aim to estimate the placement or operating costs of end-
user applications on different cloud service providers. To the best of our knowl-
edge, none has yet proposed an all-comprehensive cost model for complex IoT
applications.

Martens et al. [7] tackle the case of customers who own their IT infrastruc-
ture and want to compare public cloud offerings. They propose a mathematical
method to compute the Total Cost of Ownership (TCO) of cloud computing
services. This work set the basis for our previous RCM [3], which is extended
here to especially deal with ML-based IoT/edge applications.

Laatikainen et al. [6] study the different pricing models of many IaaS, PaaS,
and SaaS cloud providers. They realize that, despite the heterogeneity and com-
plexity of the models, common offering patterns exist, however no established
normalized price strategy is available. Thus, the authors propose an extended
SBIFT-based pricing model customized for generic cloud services.

Nguyen et al. [9] study the optimal placement of IoT/edge applications in
cloud systems employing virtual network functions. Based on a system archi-
tecture with focus on the IoT network topology, they define an analytical cost
model in terms of computation resources and network bandwidth, as well as
algorithms for small and large-scale network settings. Our analysis is instead
focused to the cost of edge-to-cloud service architectures.



4 M. E. Poleggi et al.

With the goal of simulating an infrastructure-agnostic IoT/fog application
placement method, Goudarzi et al. [5] propose a novel Memetic algorithm which
minimizes the operating costs in terms of execution time and energy consump-
tion. Local IoT computation is compared to both Edge and Cloud offloading
scenarios. Conversely, we do not consider IoT as computing devices, but pro-
pose a more refined Ege/Cloud resource consumption model that encompasses
storage and device management services.

3 A reference service-oriented architecture

We consider a generic IoT use case in which an MLM is first trained in the
Cloud on a labeled dataset and then deployed to the edge devices performing
the AI inference. In order to estimate the operating costs of such applications,
we propose, as a reference, the service-oriented architecture depicted in Figure 2:
a platform-agnostic edge-to-cloud deployment whose implementation technology
may vary across different service providers.

Fig. 2. Reference architecture for a generic self-adaptive ML-based IoT application
(edge-to-cloud deployment). Event labels are numbered according to the application
workflow described below.

The minimal set of necessary service components is:

IoT Infrastructure Management to compose, provision and monitor Edge
/ IoT networks. Edge devices and their companion IoT devices are mostly
autonomous; their Edge Framework modules are packaged into some form
and provisioned to them from a Cloud repository. As a best practice, a



Edge-to-Cloud Solutions: A Cost Comparison 5

dedicated control path would be used for IoT Infrastructure Management
operations–especially for monitoring and telemetry tasks.

Edge Framework to enable edge modules programming and execution as mi-
cro services. We assume that Edge Framework artifacts (OS and application
modules) are provisioned as Docker containers–possibly the most popular
way of deploying micro services without resorting to provider-specific ser-
vices like those based on Functions-as-a-Service (FaaS).

Container Facilities to build a Docker container with a trained MLM and
possibly other Edge Framework artifacts, and to store it in a Cloud reg-
istry. Edge devices would then pull containers directly from the registry.
A full-fledged builder component would enable automatic (event-driven)
(re)building of containers.

Communication Hub to create an event-based messaging service among the
different application’s modules: the reception of an event triggers a workflow
operation.

Storage Facilities to store labeled training data and several MLM versions in
Cloud data warehouses.

Machine Learning Facilities: to build and train a MLM in the Cloud. In the
case of a supervised learning strategy, we assume that the associated labeling
task is performed by humans.

The service-oriented architecture depicted in Figure 2 is event-based and
data-driven. Once the system bootstrap phase has been performed, the applica-
tion workflow follows the logic described in Algorithm 1 (Edge) and Algorithm 2
(Cloud).

See [10] for a detailed discussion of how the different platforms cover the
above components, and how their respective service-level offerings compare to
each other.

4 Resource consumption model

In order to estimate the operating cost of a self-adaptive ML-based IoT appli-
cation, we need to further specify the edge application. We are interested in
large-scale scenarios characterized by different and varying operating conditions
that cannot be tackled with a unique, static MLM configuration. Thus, we need
an edge AI that is 1. tailored to different contexts by leveraging several MLMs
(context-awareness), and 2. continuously improved over time through recurrent
retraining of its MLMs (self-adaptation). For the sake of clarity, we consider two
example scenarios: Road Traffic Management and Smart Grid. In the former
case, camera-less sound sensors perform vehicle classification according to the
noise they generate; this application is context-aware since the noise generated
by a vehicle depends on several aspects: wet/dry weather, pavement type, street
configuration, surroundings, etc. In the latter case, edge devices are deployed
in households to predict electrical energy consumption and production; this ap-
plication is context-aware because the prediction depends on different settings:
urban/rural, season, weather, weekdays/weekend, etc.



6 M. E. Poleggi et al.

Algorithm 1: Edge Processing

task Application:
Data: infThreshold
forever do

1. newData ← edge.IoTSensor.read()
(appResult, confidence) ← edge.AI.doInference(newData)
if confidence > infThreshold then

// The inference is satisfying
1.a.i edge.sendUserOutput(appResult)

1.a.ii edge.event.send(’Inference_OK’)
else

// The inference is *not* satisfying
1.b.i edge.cloudStorage.put(newData)

1.b.ii edge.event.send(’Inference_KO’)

task Provisioning:
// Triggered by ’Update’ events (3.a.) from the Cloud Processing

Algorithm 2
3.b. newAppContainer ← edge.cloudStorage.get()

edge.AI.doUpdate(newAppContainer)

From an IoT perspective, groups (or clusters) of sensors are expected to
belong to different spatio-temporal contexts, each needing its own MLM config-
uration. A context is defined in terms of some features, such as location, time of
the day, season, weather conditions, surroundings, etc.–anything that may affect
the MLM performance. Our scenarios are based on the following assumptions:

– Each context has exactly one specialized MLM–this is the simplest configu-
ration.

– Each sensor belongs to one context at any time, but can shift from one
context to another over time. Sensors belonging to the same context are ex-
pected to exhibit a similar behavior. We deal with context shift by simulating
periodical retraining of a fixed fraction of the MLMs.

– Each sensor is connected to only one edge device to which it reports measure-
ment events. Any edge device support as many MLMs as are the contexts of
the sensors connected to it. When receiving an event from a given sensor, the
corresponding MLM is triggered in the edge device, as explained in Figure 1.

The model considers the fees for registering the edge devices and is com-
posed of sub-models for, respectively, exchanged control messages (application
and telemetry, excluding data), storage (data at rest and operations), data trans-
fers (network usage for data moving between the Edge and the Cloud) and com-
puting. The model’s parameters are listed in Table 1: the actual values depend
on the application; they are detailed in [10]. For each sub-model, we compute
the application demand (workload) for one edge device. Then, for each platform
under study, we chose the service resources (storage, messaging, computing, etc.)



Edge-to-Cloud Solutions: A Cost Comparison 7

Algorithm 2: Cloud Processing

Data: maxNewDataCount
forever do

newEvent ← cloud.event.receive()
switch newEvent do

2. case ’Inference_KO’ do
// In IoT Infrastructure Managament

2.a. cloud.event.send(’New_Data’)
cloud.dataSet.newDataCount + = 1

case ’New_Data’ do
// In Machine Learning Facilities

2.b. if cloud.dataSet.newDataCount ≥ maxNewDataCount then
2.b.i rawDataBatch ← cloud.cloudStorage.get()

2.b.ii labeledDataBatch ← cloud.labelling(rawDataBatch)
2.b.iii newMLM ← cloud.MLTraining(labeledDataBatch)
2.b.iv cloud.cloudStorage.put(newMLM)

case ’New_Model’ do
// In Container Facilities

2.c.i newMLM ← cloud.cloudStorage.get()
2.c.ii newAppContainer ← cloud.containerBuilder(newMLM)

cloud.containerRegistry.put(newAppContainer)
2.c.iii cloud.event.send(’New_App’)

3. case ’New_App’ do
// In IoT Infrastructure Management, triggers Edge’s

’Provisioning’ task in Algorithm 1
3.a. cloud.event.send(Update’)

that satisfy the demand at the cheapest offering, so as to obtain a normalized
price list. Based on these prices, we compute the cost of using the chosen re-
sources on a large-scale deployment.

With reference to Figure 2, the edge intelligence workflow is simulated as
follows:

1. Bootstrap. Sensors are clustered on a given feature set, resulting in a set of
MLMs (ml_contexts). The corresponding MLMs are provisioned to the edge
devices. The costs associated with the bootstrap phase are not considered
because they are negligible (< 1%) compared to those of the operation phase.

2. Operation. The sensor network is started: the process is now event-driven.
At a frequency of event_rate, each edge device is fed a “raw” sensing data
item, each of size raw_data_size, and outputs one “application” data item,
each of size app_output_size.
a. ML inference. Inference operations are unsuccessful with probability

ml_error_rate. Accordingly, a certain amount of raw data (in addition
to the application data) is uploaded to the Cloud and stored there.



8 M. E. Poleggi et al.

Table 1. Cost model’s parameters.

Parameter Description

event_rate Rate at which the MLM is triggered

raw_data_size Size of a raw data item fed to the MLM

app_output_size Size of an application output item produced by the MLM

ml_error_rate Fraction of events which the MLM is unable to classify or predict

ml_model_size Size of the MLM

ml_contexts Number of contexts: each context needs a specific MLM

ml_point_size Size of a data point used to train the MLM

ml_train_size Number of data points used to train the MLM

ml_train_time Computing time needed for training the MLM on 1 vCPU

ml_train_rate Rate of MLM training rounds in the Cloud

ml_underperf Fraction (i.e., the "nonperforming") of all MLMs that must be
retrained at each round

ml_train_deadline Maximum allowed time to train all nonperforming MLMs at each
round. This sets the minimal number of needed computation re-
sources.

edge_img_size Size of the system package (OS, containers, MLM and libraries)
deployed to any edge device

daily_connect_time Number of minutes per day during which an edge device is con-
nected to the Cloud

deployment_size Number of edge devices deployed

tmetry_metrics Number of telemetry metrics collected at the edge devices

tmetry_msg_rate Rate at which telemetry messages are sent form the edge appli-
cation to the Cloud

tmetry_msg_size Size of a telemetry message

b. Continuous learning. MLMs whose prediction scores fall persistently
below a given threshold (which we do not specify) are said “nonperform-
ing”: they are a fraction ml_underperf of the total. We assume that the
related MLM is retrained in the Cloud at frequency ml_train_rate.

4.1 Messaging model

As noted above, a well-designed edge application would use separate channels
for application messages and infrastructure control messages. Hence, we consider
two classes of messages: application and telemetry (which includes monitoring



Edge-to-Cloud Solutions: A Cost Comparison 9

and logging) that are respectively handled by two different services. Notice that
network usage for data transfers is excluded here.

Application messages are routed through the Communication Hub compo-
nent. Telemetry messages may be conveyed through a dedicated service sub-
component of the IoT Infrastructure Management, where available; else the same
Communication Hub is used. Application messages are exchanged for any oper-
ations that have to be performed in the Cloud.

4.2 Storage operation model

We consider the used space (data at rest) and the rate of operations performed
in the Cloud storage service. Here we only attempt a rough estimate of the
workload–a detailed analysis is beyond the scope of this paper. We assume that:

– Application data are uploaded to the Cloud for each MLM execution. More-
over, raw data are uploaded to the Cloud on each unsuccessful inference.

– Each upload of raw and application data to the Cloud triggers one write-like
operation.

– To generate a new MLM, a set of data points, each of size ml_point_size,
is
1. first, transferred (read-like) from Cloud storage to the Machine Learning

facilities service for labeling,
2. then, transferred (write-like) from the Machine Learning facilities service

back to Cloud storage,
3. again, transferred (read-like) from Cloud storage to the Machine Learn-

ing facilities for training,
4. finally, stored (write-like) for later usage (retraining).

4.3 Data transfer model

Data transfers may incur costs related to network usage metering, excluding
application messages and telemetry. We make the following assumptions:

– Any edge device is provisioned once at bootstrap with a payload of edge_
img_size (OS) and ml_model_size (MLM).

– Application output data (i.e., inference results) are always uploaded to the
Cloud. Raw data are uploaded to the cloud only upon failed inference.

– We assume that the average number of learning algorithm executions is set
by ml_train_rate. Accordingly, any affected edge device is re-provisioned
with a payload of ml_model_size+edge_img_size.

4.4 Computing model

When the prediction fails at the Edge, some raw (low-performance) data are
uploaded to the Cloud, with the following assumptions:

– Data labeling time is not taken into account.



10 M. E. Poleggi et al.

– If a platform does not provide an optimized ML training service, we use
the pricing figures for computing resources based on equivalent or similar
technology.

Our computing model:

1. Sets a target maximum training time for the whole deployment (ml_train_
deadline), irrespective of its size and of the number of contexts.

2. Computes the sequential virtual CPU (vCPU) time
(monthly_cloud_computing_rate) needed to train one MLM.

3. Computes the minimum number of vCPUs
(cloud_computing_vcpus) needed to meet the training deadline for one
MLM, assuming that all vCPUs run in parallel and are fully utilized, and
that the training process is embarrassingly parallel.

4.5 PaaS pricing

Edge-to-cloud platforms may charge for their services on either a pay-as-you-
go or a long-term commitment basis, possibly with discounts. We consider here
only platform-as-a-service (PaaS) hosting costs for long-term (1 year), large-scale
deployment (1K active devices). Costs are incurred at six different service layers:

– Edge device management. It may incur the following costs:
• A yearly Subscription.
• A Registered edge device with any associated fixed costs, such as spe-

cific telemetry metrics.
• A minute of Connectivity, assuming that any device is connected 24/7.

– Messaging. We only consider edge-cloud communication.
• A Telemetry message exchanged with the Cloud.
• An exchanged Application message (irrespective of its type) and any

subsequent operation triggered in the Cloud: we assume that each mes-
sage triggers exactly one device status update plus another Cloud opera-
tion (statistic aggregation, dashboard visualization, etc.). For platforms
metering by volume, we do the appropriate conversion.

– Data transfer: each byte transferred from the Edge to the Cloud and vice
versa, as well as between different Cloud services may incur a cost. Thus, we
break this down into: Cloud-to-Edge, Edge-to-Cloud and Intra-Cloud.
For this latter, we assume that all transfers occur within the same “avail-
ability” zone, that is, roughly speaking inside the same data center.

– Storage: each unit of Space stored incurs a cost; each Read and Write
operation may incur a cost.

– Computing: each hour spent by any application’s Cloud component incurs
a cost. Additional costs for a minimum amount of attached storage are also
considered.

– Technical support: Helpdesk.

Details about the pricing that accommodates the two scenarios for the dif-
ferent platforms are available elsewhere [10].



Edge-to-Cloud Solutions: A Cost Comparison 11

5 Operating cost comparison

The cost estimates are made with the assumption that each “solution” covers
all the edge application’s needs in terms of messaging, data transfer, storage
and computation. The only fully-integrated solutions considered in this work
are AWS and Azure, whereas the others need partnering with foreign service
providers: we consider official partnerships when they exist, and otherwise the
cheapest foreign Cloud option fulfilling the mission; foreign partnership is sup-
posed to incur the extra provider’s helpdesk costs. Specifically:

– Google Cloud does not provide native Edge infrastructure management ser-
vices.

– Google has partnered with Balena, hence the complete solution “Google
Cloud + Balena”.

– SixSq Nuvla does not provide native telemetry, event, storage and comput-
ing services. SixSq has partnered with Exoscale for storage and computing
services. The cheapest telemetry and event services are provided by AWS.
Hence the complete solution “SixSq Nuvla + Exoscale + AWS”.

– Balena can be used as a stand-alone Edge management platform, though
it needs extra services exactly as for Nuvla. Hence the complete solution
“Balena + Exoscale + AWS”.

– Since AWS support fees are proportional to the total AWS charges, and AWS
telemetry/event service fees account for ~28% of the whole AWS solution,
the same corresponding extra hepldesk cost has to be charged to both SixSq
Nuvla and Balena.
Estimates are provided for two scenarios: Road Traffic Management and

Smart Grid. The values of the cost model’s parameters (c.f. Table 1) of these
two scenarios are detailed in [10].

Scenario: Road Traffic Management In this scenario, the edge devices clas-
sify transiting vehicles by sampling environment noise via high-definition micro-
phones. By our estimates and preliminary knowledge, the application is charac-
terized by:

– High event rate (~1Kevent/hour), because of heavy traffic in dense urban
areas.

– Big raw data footprint (~2MiB/sample), because noise sensors must sample
some seconds of high-resolution stereophonic audio signal.

– High ML error rate (~35%), because of the involved bleeding-edge technology
based on neural networks.

– Long ML training times (~24h @ 1vCPU), because of the involved complex
models.

The cost breakdown for a deployment of 1K edge devices over 1 year is shown
in Figure 3. The main variable cost drivers are especially storage operations and
then messaging. Computing and data transfer have a very small impact (< 1%)
which is somewhat unexpected and needs further investigations: a possible reason
could be our overly optimistic computing model.



12 M. E. Poleggi et al.

Fig. 3. Road Traffic Management: Cost breakdown for 1K-deployment over 1 year.

Scenario: Smart Grid In this scenario, the edge devices forecast energy pro-
duction and consumption by sampling electric power at several sensing stations
in the same context—household, office, school, plant, etc. By our estimates and
preliminary knowledge, the application is characterized by:

– Low event rate (~60 event/hour), because power measurements are normally
averaged over a rather long time frames (minutes).

– Small raw data footprint (~0.1MiB/sample), because only power measure-
ments are involved.

– Low ML error rate (~5%), because of proven and stable forecasting methods.
– Short ML training times (~4h @ 1vCPU), because forecasting is mainly

based on simple models, such as XGBoost and LSTM.
– High ML training rate (~8 round/month), because the application needs to

react quickly to context variations–changing weather, reduced consumption
during unplanned absences, etc.

The cost breakdown for a deployment of 1K edge devices over 1 year is
shown in Figure 4. The main variable cost drivers are messaging and storage
operations for two of the well-known providers; conversely, the edge management
cost is dominating with AWS and the two newcomers. Again, computing and
data transfer have a very small impact (< 1%). Storage costs are negligible with
the newcomer solutions because the adopted storage provider (Exoscale) does
not charge for operations.

6 Conclusion

Large-scale IoT applications based on ML and employing self-adaptive algo-
rithms call for cost-effective edge-to-cloud solutions. Indeed, this kind of systems



Edge-to-Cloud Solutions: A Cost Comparison 13

Fig. 4. Smart Grid: Cost breakdown for 1K-deployment over 1 year.

poses challenges both at the Edge, because ML inference has to be performed ef-
ficiently on resource-constrained devices, and in the Cloud, because vast amounts
of data have to be transferred and stored. Also, managing thousands of IoT and
edge devices needs streamlined solutions for system monitoring and recurrent
software updates.

Stakeholders wish to make informed decisions about the best PaaS Cloud
platform for such deployments; thus, an analysis of the application requirements
has been done to isolate the needed service components. Based on that, we pro-
posed, as a first contribution, a generic reference service-oriented architecture as
well as an event-driven application workflow, which we then mapped on selected
Cloud platforms. Our second contribution is a detailed resource consumption
model, based on PaaS pricing, which considers edge management, messaging,
data transfer, storage space and operations, computing and helpdesk. We drew
some cost estimates in two scenarios (Road Traffic Management, Smart Grid).
The results show that the expenditure breakdown may vary significantly across
the considered platform; among the variable costs, computing and data transfer
have a very low impact compared to messaging and storage operations (space
fees are negligible); the fixed costs (edge management and helpdesk) may domi-
nate in scenarios characterized by a compact data footprint. The surprisingly low
computing cost, especially in computationally-heavy scenarios like Road Traffic
Management, might induce thinking that, contrarily to our expectations, dy-
namic AI (context-awareness and self-adaptation) has no significant incidence
on overall expenditures. This demands more research: in fact, our simple com-
puting model might need refinements to consider resource contentions such as
cache/main memory scarcity and its consequent CPU stalling effects.

For future developments, we plan to integrate the edge-to-cloud cost model
discussed in this paper into our placement tool [3]. We are also interested in



14 M. E. Poleggi et al.

exploring cost models based on Functions-as-a-Service (FaaS) instead of pure
Docker containers.

References

1. Amazon Web Services, Inc.: AWS IoT Greengrass, https://aws.amazon.com/
greengrass/. Last accessed: 2022-06-01.

2. Balena: Balena, https://www.balena.io/. Last accessed: 2022-06-01.
3. Belli, O., Loomis, C., and Abdennadher, N.: Towards a Cost-Optimized Cloud

Application Placement Tool. In: 2016 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 43–50 (2016). doi: 10.1109/
CloudCom.2016.0022

4. Google: Goolge Clouf IoT Core, https://cloud.google.com/iot- core. Last
accessed: 2022-06-01.

5. Goudarzi, M., Wu, H., Palaniswami, M., and Buyya, R.: An Application Placement
Technique for Concurrent IoT Applications in Edge and Fog Computing Environ-
ments. IEEE Transactions on Mobile Computing 20(4), 1298–1311 (2021). doi:
10.1109/TMC.2020.2967041

6. Laatikainen, G., Ojala, A., and Mazhelis, O.: Cloud Services Pricing Models. In:
Herzwurm, G., and Margaria, T. (eds.) Software Business. From Physical Products
to Software Services and Solutions, pp. 117–129. Springer Berlin Heidelberg, Berlin,
Heidelberg (2013)

7. Martens, B., Walterbusch, M., and Teuteberg, F.: Costing of Cloud Computing
Services: A Total Cost of Ownership Approach. In: 2012 45th Hawaii International
Conference on System Sciences, pp. 1563–1572 (2012). doi: 10.1109/HICSS.2012.
186

8. Microsoft: Azure IoT Edge, https://azure.microsoft.com/en-us/services/
iot-edge/. Last accessed: 2022-06-01.

9. Nguyen, D.T., Pham, C., Nguyen, K.K., and Cheriet, M.: Placement and Chaining
for Run-Time IoT Service Deployment in Edge-Cloud. IEEE Transactions on Net-
work and Service Management 17(1), 459–472 (2020). doi: 10.1109/TNSM.2019.
2948137

10. Poleggi, M.E., Abdennadher, N., Dupuis, R., and Mendonça, F.: Edge-to-cloud
solutions for self-adaptive machine learning-based applications. Tech. rep., HEPIA
- Haute école du paysage, d’ingénierie et d’architecture (2022)

11. SiqSq SA: Nuvla, https://sixsq.com/products-and-services/nuvla/overview.
Last accessed: 2022-06-01.


