
Telecommunications Engineering Curriculum

Graduation Internship Report

Combining FPGA and Edge-to-Cloud solutions
to build AI-based self-adaptive applications

Realized By:
Abir Chebbi

Academic Supervisor :
Prof. Rached Hamza

Professional Supervisor :
Prof. Nabil Abdennadher

Francisco Mendonça

Work proposed and fulfilled in collaboration with:

Academic year : 2021 - 2022

Signatures

Mr. Nabil Abdennadher

Mr. Rached Hamza

DEDICATION

This work is dedicated to my beloved parents, Ali & Souad, for all the support and
encouregment they gave me.

To all my family, I dedicate this work as a symbol of my love and eternal thanks.

i

ACKNOWLEDGMENTS

In term of this project, I would like to express my heartfelt gratitude to anyone
who contributed to the development of this work.

I would especially like to thank my supervisor, Mr. Nabil Abdennadher, for
his guidance and constant supervision as well as for entrusting me with missions
that challenged my knowledge.

I would also like to thank Francisco Mendonça, Raoul Dupuis and Poleggi
Marco Emilio for all the explanations and help throughout this project .

My sincere thanks go to Quentin Berthet and Gabriel Da Silva Marques
for their kind cooperation and their support.

Finally, I would like to thank my supervisor Mr.Rached Hamza for his con-
tinuous support and his remarks.

ii

ABSTRACT

Noise pollution, like any other pollution, is a nuisance to society. It can be found
anywhere but especially in cities. Studies show that anything at or above 55 deci-
bels can trigger an increase in blood pressure, heart rate, and stress hormones in the
blood. Road traffic remains the main source, where it represents 80% of this noise
pollution followed by railways, airports, and industry.

In this context, the “Noise Radar” project comes to offer a generic solution for
road traffic monitoring by developing intelligent acoustic sensors able to recognize
noise activities for various vehicle classes and crack down on the vehicles making
too much noise.

Therefore, we intend, in this project, to implement a self-adaptive Edge-to-Cloud
platform for managing a network of Noise Radar sensors at a city scale. The Edge-
to-Cloud architecture provides a coordination mechanism that allows us to monitor
and update Noise Radar sensors with minimal external intervention. Through this
network, we aim to deploy inference modules to be executed on the edge, that were
trained on the cloud. As a result, Field Programmable Gate Array (FPGA) can be
utilised for this, since they can execute instructions in parallel and for their security
level also.

As part of our contribution to this project, we conducted research to compare
well-known edge-to-cloud technologies and choose to test two of them in this project.
The workflow for developing an FPGA-accelerated application was then integrated.
In a subsequent step, we containerized this application and tested its deployment
using edge-to-cloud technologies.

As a result, we discovered the ability to update the FPGA via the cloud, which
reinforces the concept of self-adapting edge devices. As a result, better models will
be generated, and we will be able to update the AI models running on the edge.

Keywords: Edge, IoT, Cloud, Noise pollution, Field Programmable Gate
Array

iii

LIST OF ABBREVIATIONS

FPGA : Field Programmbale Gate Array

NoRa : Noise Radar

NN : Neural Network

AI : Artificial Intelligence

SONAL : SouNds AnaLytics

MQTT : Message Queuing Telemetry Transport

OS : Operating System

MPSOC : Multiprocessor On Chip

TPU : Tensor Processing Unit

DPU : Deep Processing Unit

CNN : Convolutional Neural Network

HTTP : Hypertext Transfer Protocol

CPU : Central Processing Unit

PAC : Platform Assets Container

iv

XRT : Xilinx RunTime

v

CONTENTS

General Introduction . 1

1 Presentation of Securaxis’ software 5
1.1 Introduction . 5
1.2 SONAL software . 5
1.3 SONAL software accelerated on FPGA 8
1.4 Improve the performance of SONAL application 9
1.5 Conclusion . 10

2 Comparative study between Edge-to-Cloud solutions 11
2.1 Introduction . 11
2.2 Balena . 14
2.3 Google Cloud Platform . 16
2.4 Azure IoT Edge . 17
2.5 NuvlaEdge . 18
2.6 AWS GreenGrass . 19
2.7 Conclusion . 20

3 FPGA accelerated application 21
3.1 Introduction . 21
3.2 Field Programmable Gate Arrays . 22
3.3 Zynq MPSoC hardware overview . 23
3.4 Vitis . 25
3.5 Accelerated application structure . 26
3.6 Sample FPGA application . 26

3.6.1 Prepare the kernel code and host code for Vector add 26
3.6.2 Prepare the Platform Assets Container 28
3.6.3 Activate the PAC on the device 28

3.7 Accelerate convolutional neural network 31
3.8 Conclusion . 32

vi

CONTENTS

4 Deployment of FPGA-accelerated application 33
4.1 Introduction . 33
4.2 Containerize FPGA application . 33
4.3 Deployment through Azure IoT Edge 36
4.4 Deployment through Nuvla/NuvlaBox 38
4.5 Deploy FFT accelerated application 42
4.6 Conclusion . 43

General Conclusion . 44

vii

LIST OF FIGURES

1 Number of people in the EEA-33 member countries exposed to noise
levels above 55 dB Lden, 2012, source([21]) 2

1.1 Inference model of SONAL software 6
1.2 Training model of SONAL software 7
1.3 SONAL components computed on FPGA device 9
1.4 Update SONAL application through Cloud 10

2.1 A self-adaptive SONAL application scenario 12
2.2 Balena architecture . 15

3.1 The basic structure of the FPGA . 22
3.2 Zynq UltraScale + MPSoC ZCU104 evaluation board 23
3.3 The base components of XCZU7EV MPSoC 24
3.4 Vitis Unified Software Platform . 25
3.5 Structure of an application interacting with the FPGA device 26
3.6 Compile the Vector add on Vitis . 28
3.7 Checking the current available HW configurations 29
3.8 Activate the configuration for the Vadd accelerator 30
3.9 Checking the activated HW configurations 30
3.10 Executing Vector add application on the ZCU104 device 30
3.11 Loading kernel code to PL part . 31

4.1 The environment needed for the container in order to communicate
with the FPGA device . 34

4.2 Pass the host code and the kernel code to the container 35
4.3 Run the Vector add container . 35
4.4 The Edge device based FPGA is connected to Azure IoT edge 36
4.5 Two docker containers running on the Edge device based FPGA and

representing the IoT Edge Runtime 36
4.6 Vector add image stored in Azure Container Registry 37
4.7 Vector add module running on the Edge-based FPGA device 37
4.8 The workflow to deploy an application through Azure IoT Edge to

the Edge-based FPGA device . 38

viii

LIST OF FIGURES

4.9 Vector add through Azure interface 38
4.10 The Edge based FPGA device connected to Nuvla.io 39
4.11 Deploy Vector add application on NuvlaBox 41
4.12 Vadd_fpga application running in NuvlaBox 41
4.13 FFT container runing on NuvlaBox 43
4.14 FFT container running on Azure IoT Edge 43

ix

LIST OF TABLES

3.1 The required files in PAC . 29

x

GENERAL INTRODUCTION

Now more than ever, it has become crucial to adopt a multifaceted approach when
managing the cities and smartening them. For instance, urban mobility affects
the environment (e.g. air pollution, noise, CO2 emissions, biodiversity losses),

the citizens (e.g. traffic chaos, security, decreased quality of life), and infrastructure
investors (e.g. overloaded road infrastructures with increased maintenance and
lower lifecycle).

Noise pollution is still a major public health issue. As seen in Figure 1, published
by the European Environment Agency, road traffic is the most common source of
environmental noise. A wide range of measures is included in the noise management
action plans established by several states. The most typically stated measures in
cities are those aimed at traffic control. Replacement of road surfaces, improved
traffic flow, and lower speed restrictions are examples of such interventions.

1

General Introduction

Figure 1: Number of people in the EEA-33 member countries exposed to noise levels
above 55 dB Lden, 2012, source([21])

The process of assessing the level of noise in industrial and residential areas
is referred to as noise monitoring. The Global Noise Monitoring Market helps to
better understand patterns that may act to reduce noise pollution. It was valued at
USD 621.03 million in 2016 and is expected to increase to USD 900.11 million by
2025 [11].

In response to this market trend, the Geneva based SecurAxis[25] start-up pro-
poses a camera-less noise sensor that “catalogues” vehicles according to “classes”
previously defined by the end user (noisy/non noisy vehicles, cars, trucks, buses,
motorcycles, e-cars, etc.). This noise sensor supports a Deep Learning based soft-
ware named SONAL and will be the backbone on which noise management digital
platforms can rely to detect and identify noise vehicles. SecurAxis’ solution al-
lows 3D acoustic detection for a better understanding of the mobility patterns of
cities and authorities independently of the services currently provided by GAFAM
(Google, Apple, Facebook, Amazon, MicroSoft).

SecurAxis’ ambition is to address the city needs in the field of sound measure-
ments on moving vehicles. In Europe, this solution is currently being tested in
Paris, London, Porto, Maastricht, Stuttgart and Oulu. In Switzerland, SecurAxis
sensors are already deployed in Geneva, Fribourg and Zurich. To improve its prod-
uct, Securaxis is participating in The Noise Radar (NORA) Innosuisse project with
HES-SO (HEPIA) and EPFL [1]. The objectives of NORA are as follows:

1. Address the urban traffic noise pollution issue by devising acoustic sensors
able to measure in real time the psychoacoustic impact of it.

2

General Introduction

2. Develop and set up a distributed edge-cloud based platform that will allow a
real-time and self-adaptive detection, counting, monitoring and classification
of vehicles via their emitted noise under several constraints.

3. Answer public health noise and air quality related issues by being able to
detect noisy vehicles

The work presented in this document deals with the second objective. Concretely
speaking, this research aims to develop a “self-adaptive” solution able to classify ve-
hicles according to the noise they generate. The solution will be deployed on an
edge-to-cloud platform. The edge device is camera-less and relies on the FPGA
technology to implement the vehicle classification.

Self-adaptability relies on a coordination model, provided by the edge-to-cloud
infrastructure, which allows Securaxis sensors to communicate with the cloud in
order to ensure provisioning and continuous delivery to the edge. The objective
of self-adaptability is that the intelligence within the edge can adapt to changing
operating conditions. This could be done by improving inference modules in case of
poor performance.

Edge computing is a promising approach for dealing with the issues such as
delay in response, high bandwidth consumption, and reliability issues. The main
idea of edge computing is to process the data at edge nodes without the need to
transfer gigabytes of data to the cloud. For privacy concerns, edge computing
analyses sensitive data within a private network, thereby protecting them from any
malicious use. Thus, local data processing is the perfect opportunity to anonymize
data or remove together any privacy intrusion aspect.

Moreover, it makes more sense to process the data close to its source, so as
to transform them into valuable information. In other words, it’s useless to stream
all the raw data to the cloud, we only need to be notified when such “abnormal”

events occur, for example, low accuracy of detection.

As specified earlier, SONAL is based on Deep Learning technology and Neural
Network architecture. Using Neural Networks (NN) requires a lot of power and
is computationally expensive. Moreover, having the program on the edge must
be safeguarded to protect the intellectual property of a company. To overcome
this problem, SONAL can be implemented on a Field Programmable Gate Array
(FPGA) circuit. An FPGA-based implementation can ensure security, privacy, and
an optimal balance between power consumption and performance.

This report is organised as follows: The first chapter presents the overall archi-
tecture of the solution to implement. It particularly describes the software deployed
on the Securaxis noise sensor. The second chapter provides a comparative study
of five candidate edge-to-cloud solutions that could be used as a backbone to im-
plement the targeted solution. The third chapter deals with the implementation of
SONAL on an FPGA infrastructure. The fourth and final chapter walks us through

3

General Introduction

the deployment of the integrated solution on two edge-to-cloud solutions: Azure and
Nuvla/NuvlaEdge.

4

CHAPTER 1
PRESENTATION OF SECURAXIS’ SOFTWARE

1.1 Introduction
Vehicles produce heat, sounds, and a magnetic field. Many approaches to vehicle
detection have been investigated using various types of signals. The approach based
on acoustic signals appears to be the most promising. Moving vehicles make distinct
sounds. These sounds are produced by moving parts, friction, wind displacement,
emissions, etc.

In this context, in this chapter we introduce the SONAL application, SONAL
is an intelligent software developed for Securaxis sensors, that allows the detection
and classification of vehicles based on acoustic signals.

The chapter is composed of three sections: The first section defines in general
SONAL application. The second section represents the implementation of SONAL
on the FPGA. The third and final section deals with a few improvements carried
out to SONAL to have better accuracy.

1.2 SONAL software
SONAL is an intelligent software developed by Securaxis, which is a company that
aims to develop, install and operate safety and security solutions for smart cities.
This software is able to extract vehicle characteristics based on the noise coming
from the traffic. These characteristics are basically the number of vehicles, type, di-
rection, and even an estimation of the speed of the traffic. After detecting vehicles,
the sound emitted is analysed and the vehicle is categorised:

1. Car

2. Motorcycle

3. bus/truck

5

CHAPTER 1. PRESENTATION OF SECURAXIS’ SOFTWARE

4. bicycle

5. unknown (the vehicle is not identified)

The classification is based on a Neural Network (NNc) that recognises the vehicle
according to the sound it generates (Figure 1.1). After receiving the signal from the
microphone, signal processing must be performed. The data is then sent to an
intelligent model (detection Neural Network), which determines whether or not the
sound is generated by a vehicle. If this is the case, the output will be fed into the
classification model to classify the vehicle.

Figure 1.1: Inference model of SONAL software

During a learning step (Figure 1.2), a camera that films the vehicles allows the
noises made by the vehicles to be labeled. The labeled data is then used to launch a
learning algorithm. In fact, using a camera will be beneficial because it will record
the passing vehicles. At the same time, it will retrieve the image-related record from
the microphone to have at the end an audio/frame sampler.

6

CHAPTER 1. PRESENTATION OF SECURAXIS’ SOFTWARE

Figure 1.2: Training model of SONAL software

To summarise, SONAL is first trained to recognise vehicles using a training
database of thousands of sound samples that have previously been labeled using a
camera. Once trained, the software is deployed in production on acoustic sensors
placed on the roadside and distributed on a city scale.

7

CHAPTER 1. PRESENTATION OF SECURAXIS’ SOFTWARE

1.3 SONAL software accelerated on FPGA
As stated in the introduction. One of the goals of the NORA project is to benefit
from FPGA capabilities. We intend to use FPGA accelerators to implement parts
of the SONAL application that need to be accelerated.

In order to realise the advantages of an FPGA accelerated application, having
a look at which parts in the code take more time to be executed and implementing
these parts in custom hardware results in an ideal balance between performance and
power. Therefore, a profiling process of SONAL software has to be done.

The two intelligent components NNd and NNc (Figure 1.3) in the SONAL appli-
cation are essentially heavy computations on the Edge. Using a CPU for this kind
of computation takes a lot of time. In addition to the NN algorithm, there are other
modules of SONAL that must be accelerated such as Fast Fourier Transform (FFT),
which is one of the essential building elements of Digital Signal Processing (DSP)
and Signal Analysis and it represents an important part of the SONAL application.
FFT helps to process signals in the frequency domain. Standard processors might
be too slow for this kind of computation. Matrix multiplication has been considered
also a heavy computation.

Figure 1.3 depicts the main components that must be accelerated on the FPGA:
This diagram has been heavily abstracted in order to facilitate understanding of
FPGA-accelerated applications. FFT and matrix multiplication are two specific
functions that can be accelerated using hardware accelerators. However, there is a
general accelerator on the FPGA called Deep-learning Processor Unit (DPU) that
is more generic to Deep Learning algorithms for the NN components. The third
chapter will provide further details related to this part.

8

CHAPTER 1. PRESENTATION OF SECURAXIS’ SOFTWARE

Figure 1.3: SONAL components computed on FPGA device

1.4 Improve the performance of SONAL applica-
tion

As we all know, model performance is a measure of how well an AI model performs.
However, it is not solely about the model’s accuracy. Model performance is an eval-
uation of the model’s ability to perform a task accurately. We are not just talking
about training data, but also about the runtime data when the model is deployed.
As a result, it is necessary to evaluate model performance in real-time to correct our
model.

In our case, the edge’s classification performance depends on the “context” where
the device is deployed, so we are sure that the model will not have the same per-
formance. This depends on the road types, street configuration, etc. Therefore,
we must consider that after deployment, each sensor will have its own identity and
environment.

Furthermore, the model may perform poorly in a bad environment. For example,
detecting a vehicle in adverse weather conditions, particularly on a rainy day, is not
the same as it is on a normal day. In this case, the detection/classification accuracy
might drastically decrease.

As a solution, an adaptive Edge-Cloud platform is required. In other words, we
need to ensure continuous delivery to edge devices. In fact, in case of poor perfor-
mance due to isolated malfunction or contextual shift, the edge devices’ inference
modules are automatically improved. Only relevant notifications are sent to the
cloud in this situation, ensuring the continuous transmission of edge devices’ intel-

9

CHAPTER 1. PRESENTATION OF SECURAXIS’ SOFTWARE

ligence.

Figure 1.4 details the scenario of self-adaptive application, on the edge part data
that will be processed locally (signal processing coming through microphones and
model inference) by SONAL software. On the cloud part, the AI model are built
and trained, a human supervised labelling service is also needed to prepare the
training data. Therefore, the traffic between the edge and the cloud is limited to an
information exchange such as error notifications, a new improved version of the AI
models deployed on the edge, detection results, etc.

Figure 1.4: Update SONAL application through Cloud

1.5 Conclusion
This chapter was more general in nature, as we defined the software that would
run on the edge sensors. We also discussed two areas where this software could be
improved, and this serves as an introduction to the next chapter: The first aspect
was accelerating SONAL on the FPGA, with more technical details which will be
provided in the third chapter. We also present the self-adaptive aspect, which will
be addressed in the second and fourth chapters.

10

CHAPTER 2
COMPARATIVE STUDY BETWEEN EDGE-TO-CLOUD

SOLUTIONS

2.1 Introduction
Edge computing computes data close to nodes rather than sending it all to the
cloud to be processed. The user migrates from the cloud to the edge for several
reasons: faster processing, lower latency, data security, uninterrupted connectivity,
lower traffic, lower connectivity costs, and less maintenance.
This approach does not represent a replacement for the cloud; rather, it represents
an extension of the cloud. Several edge-to-cloud services stand out in this context,
with the goal of reinforcing the concept of edge computing. These technologies aim
to monitor the edge devices and ensure deployment of complex event processing,
machine learning, etc.

As discussed in section three of the first chapter, we want to self-adapt the
SONAL application and monitor our FPGA-based device via the cloud. In the long
run, we want to ensure that our AI algorithm is continuously delivered to edge sen-
sors.

This chapter aims to present some edge-to-cloud solutions on the market namely
Azure IoT Edge, AWS Greengrass, Google Cloud Platform, Nuvla/NuvlaBox, and
Balena. Nuvla/NuvlaBox is a solution developed by SixSq (a swiss company). A
study will be done to look for the solutions adequate for our edge-based FPGA.

11

CHAPTER 2. COMPARATIVE STUDY BETWEEN EDGE-TO-CLOUD
SOLUTIONS

Figure 2.1 depicts a scenario that will allow us to describe and compare each
solution. The SONAL application consumes data coming from the microphones.
The AI models, which compose the SONAL application, deployed on the edge-
device are responsible for making “predictions” based on the input sensing data in
order to detect and classify the vehicles passing by the sensors. These AI models
will be trained in the Cloud and the inference versions will be deployed on the edge.

Figure 2.1: A self-adaptive SONAL application scenario

So in this scope, basic components are chosen to do the comparison study be-
tween those services. Those components are colored in Figure 2.1. The components
specific to the learning phase are shown in orange, while the components, composing
the edge to cloud infrastructure, are shown in yellow. The components are listed
below :

• IoT Infrastructure Management Play the role of orchestration by pro-
visioning (configure and deploy) and monitoring Edge/IoT networks. Edges
devices are mostly autonomous. Indeed, the edge framework modules are
packaged and provisioned to the edge via the Cloud.

• Edge Framework This is typically in the form Software Develompment Kit
(SDK) to facilitate the programming and execution of edge modules. There-
fore, you can manage the edge runtime through an Application Programming
Interface(API), as well as tools for controlling the edge such as a command-line
interface (CLI).

• Container Facilities Represent the ability to containerize an application
and save the image in a Cloud registry for deployment on edge devices. The
containers would then be pulled directly from the registry by edge devices.

12

CHAPTER 2. COMPARATIVE STUDY BETWEEN EDGE-TO-CLOUD
SOLUTIONS

• Communication Hub Creates a message architecture for the edge modules
to communicate with one another. One of the popular communication strate-
gies is MQTT which stands for Message Queuing Telemetry Transport and
is based on event transmission. It is a lightweight and battery-friendly com-
munication technique. Other protocols, such as AMQP (Advanced Message
Queuing Protocol), may be available. AMQP supports a wide range of mes-
saging patterns and is very easy to extend. Furthermore, HTTPS is inefficient
in comparison to the previous protocols.

• Storage Facilities Represent the ability to store relevant data streamed from
the edge, in order to use it for training the AI models. It could be used also
to store the newly performed version of AI models.

• Feasibility The edge-based FPGA supports a customised Linux image. In
this case, the edge-to-cloud technology must be compatible with the hardware.

• Machine learning Facilities Builds and trains the intelligent part of SONAL
application in the cloud. Human involvement is necessary to label audio
frames. The Edge Framework notifies the Cloud, via the communication hub,
of the availability of fresh low-performance data, allowing for the coordination
of a learning round: the result is a new version of the vehicle classification
model. In general, for this part, we will use instances in the cloud as our
model is based on CNN to classify audios.

13

CHAPTER 2. COMPARATIVE STUDY BETWEEN EDGE-TO-CLOUD
SOLUTIONS

2.2 Balena
Balena is a cloud solution for IoT that enables building, deploying code to a fleet
(a group) of connected devices, and managing them through the BalenaCloud dash-
board.

• IoT Infrastructure Management Devices are tightly integrated into a
Balena ecosystem via BalenaOS and supervised by BalenaCloud. Managing
devices is proceeded through some tools such as variables, ssh access. It pro-
vides also remote log watching on its web dashboard where those messages
could be sent from the device supervisor or written by the services to stdout
and stderr.

• Edge Framework: Balena offers BalenaOS [7] which is yocto Linux-based
OS. The host OS is responsible for launching the device supervisor as well as
the containerised services. Balena has its own docker version BalenaEngine [5]
which is a container runtime based on a lightweight version of Docker’s Moby.

• Container Facilities BalenaCloud offers a container registry and a remote
builder service. Balena CLI, which is installed on the development host, is
used for deployment. "balena push" compresses the application and sends it
to BalenaCloud builder, which builds the images in an environment that suits
the devices’ architecture. The images are saved in the balena registry, and the
balena device supervisor is notified to deploy this container.

• Communication Hub Balena does not provide application messaging ser-
vices. It is the responsibility of the application developer to select/implement
one and ship it with an OS image update.

• Storage Facilities Balena does not provide Cloud storage for application
data, though any S3-compatible solution can be used.

• Feasibility In order to integrate a device with BalenaCloud, the device must
run the BalenaOS operating system. The packages of BalenaOS userspace con-
tain only the minimum services required for deploying and running containers.
Figure 2.2 illustrates the architecture of Balena infrastructure [6].

14

CHAPTER 2. COMPARATIVE STUDY BETWEEN EDGE-TO-CLOUD
SOLUTIONS

Figure 2.2: Balena architecture

This project’s device necessitates the use of a customised operating system.
The edge is indeed FPGA-based, and the hardware used has a specific archi-
tecture MPSoC multiprocessor on chip. As a result, a customised operating
system is provided, that includes the necessary libraries and drivers to ensure
communication between those processors.

15

CHAPTER 2. COMPARATIVE STUDY BETWEEN EDGE-TO-CLOUD
SOLUTIONS

2.3 Google Cloud Platform
Until now, Google Cloud Platform (GCP) has provided a basic IoT connectivity
Cloud IoT Core that allows remote control of devices and data collection from IoT
sensors. Google provides the Coral board, which includes an integrated Tensor
Processing Unit (TPU), allowing for faster AI inference.

• IoT Infrastructure Management Cloud IoT Core [12] is made up of two
modules. Device Manager allows you to remotely authenticate, configure, and
control IoT sensors. Whereas the Protocol Bridge communicates using the
MQTT and HTTP protocols. The data is streamed to the Cloud via Pub/Sub
service. There is no developed orchestration service.

• Edge Framework Google, unlike AWS, Microsoft Azure, and SixSq Nuvla,
does not offer a packed Edge Framework component.

• Container Facilities Google Container Registry [12] is a service that allows
you to save Docker images privately.

• Communication Hub Edge devices can leverage the MQTT or HTTP proto-
col "bridge" provided by the Pub/Sub [19] service to publish telemetry events,
obtain configuration data, and set device state. As a result, messages can be
utilised to trigger additional Cloud processing, such as analytics and machine
learning (re)training.

• Storage Facilities Cloud Storage [8]. A RESTful object storage Web service
with a proprietary interface.

• Feasibility Not available.

16

CHAPTER 2. COMPARATIVE STUDY BETWEEN EDGE-TO-CLOUD
SOLUTIONS

2.4 Azure IoT Edge
Azure IoT Edge is a service provided by Azure to remotely manage services deployed
and executed locally on IoT Edge-enabled devices.

• IoT Infrastructure Management IoT Hu [15] is a fully PAAS managed
service. This last is responsible for registering devices, authenticating per
device for security-enhanced, managing IoT devices at scale, and above all
monitoring user applications deployed on the edge. As well, it offers device-
to-cloud and cloud-to-device communication options (MQTT or AMQP).

• Edge Framework In this case, we are talking about IoT Edge Runtime [18]
which has the responsibility to manage the modules deployed to the edge
device. Edge Hub and Edge Agent are the two runtime modules that make up
this system. The Edge Hub acts as a proxy that ensures the communication
between the IoT Infrastructure Management (IoT Hub) and the Edge-enabled
device. The Edge Agent is in charge of deploying and managing the user
modules which represent the edge application code.

• Container Facilities Azure Container Registry [4] is a private registry based
on the open source Docker Registry 2.0. We can use any other publicly acces-
sible Docker registry.

• Communication Hub Azure provides IoT Hub message routing services [16]
in order to ensure the communication between user modules deployed on the
edge or communication between the edge and Azure Cloud. Event Hubs or the
Event Grid service can be used to further process telemetry and application
messages in the Cloud.

• Storage Facilities Azure Storage [3] covers various data types such as blobs,
files, queues, tables, and disks. The storage account offers a unique namespace
to access data from anywhere over HTTP or HTTPS (RESTful).

• Feasibilty Azure IoT Edge is a Docker container orchestration platform. To
prepare the Azure IoT Edge runtime, we must have docker moby installed on
the device.

17

CHAPTER 2. COMPARATIVE STUDY BETWEEN EDGE-TO-CLOUD
SOLUTIONS

2.5 NuvlaEdge
The Nuvla solution is also concerned with fleet management and containerized ap-
plication deployment.

• IoT Infrastructure Management Nuvla is available as either a stand-alone
software stack for installation on-premises or as a PaaS via Nuvla.io [22].
The user application is packaged as Docker images, and saved in the registry.
A docker-compose is used to create the application in Nuvla cloud. Nuvla
provides an interface App store to deploy the user application to the edge
devices.

• Edge Framework NuvlaEdge [23] runtime software. It is a set of microser-
vices managed by Nuvla cloud service in order to transform any device into
an Edge device. They support VPN-based networking with Nuvla and within
the same edge device, MQTT-based internal messaging, application monitor-
ing, security, and discovery of attached HW components like network devices,
GPU boards, etc.

• Container Facilities Nuvla supports Docker with any public or private reg-
istry.

• Communication Hub An internal MQTT messaging system is provided by
Nuvla to ensure the communication between NuvlaEdge components and any
user container running in the same internal network. For upstream commu-
nication with Nuvla.io, an HTTP-based RESTful API is used as well as a
Python client. Nuvla does not offer a private Communication Hub service,
but its private App store makes it simple to set one up.

• Storage Facilities We can use any third-party S3. Nuvla offers an S3 meta-
data catalog.

• Feasibility Nuvla is a Docker container orchestration platform. In order to
prepare the Nuvla edge runtime, we must have "docker" and "docker-compose"
installed on the device.

18

CHAPTER 2. COMPARATIVE STUDY BETWEEN EDGE-TO-CLOUD
SOLUTIONS

2.6 AWS GreenGrass
Amazon Web Services (AWS) provides a solution to build, deploy and manage ser-
vices on edge devices. These services can be serverless with lambda technology or
containerised.

• IoT Infrastructure Management AWS offers AWS IoT Device Manage-
ment [10] which is an agnostic service that allows you to manage, monitor,
and track IoT devices. Greengrass core devices can be managed as a group by
AWS Greengrass. Deployments can be arranged into device hierarchies; OTA
updates and auditing are supported; and Amazon CloudWatch monitoring is
available.

• Edge Framework AWS IoT Greengrass [14], which allows the device to con-
nect to AWS services and third-party apps, also allows the device to run AWS
Lamda functions or Docker containers locally.

• Container Facilities AWS offers Amazon Elastic Container Registry (ECR)
[20] which is a private Docker registry.

• Communication Hub AWS IoT Core, a message broker based on the MQTT
protocol, is available from AWS. It is a secure service that uses TLS 1.2 en-
cryption and is available across the entire AWS ecosystem, from edge services
to cloud storage facilities. It can also handle disconnected devices. The Event-
Bridge service handles additional processing.

• Storage Facilities AWS provides Object Storage Service well suited for raw
sensing data and AI definition files. The service is intended for online backup
and archiving of data on Amazon.

• Feasibility AWS IoT Greengrass officially supports devices with the following
architectures: Armv7l, Armv8 (AArch64), x86_64 The device architecture in
our project is AArch64, so the solution is suitable for the hardware we are
using.

19

CHAPTER 2. COMPARATIVE STUDY BETWEEN EDGE-TO-CLOUD
SOLUTIONS

2.7 Conclusion
This comparative study reveals that the overall architecture of edge-to-cloud solu-
tions is quite similar. Almost all of them are based on Docker except Balena which
provides a whole ecosystem, starting from the operating system, in order to monitor
a device. Therefore, we chose Azure IoT Edge and Nuvla/NuvlaEdge solutions to
test the deployment of the SONAL application on the edge-based FPGA.

20

CHAPTER 3
FPGA ACCELERATED APPLICATION

3.1 Introduction
After conducting research into edge-to-cloud solutions that would be appropriate for
our targeting solution, let’s delve into the specifics of our work’s hardware and soft-
ware environment. As a result, this chapter aims to present the distinctive features
of the FPGA and the implementation of SONAL software on FPGA infrastructure.

This chapter is composed of three parts: The first section explores the archi-
tectures of FPGA, as well as the advantages of using these devices. The Edge
device hardware and operating system are described in the second section. The
third section describes the structure of an application interfacing with an FPGA by
presenting a sample application “vector-add” which computes the addition of two
vectors using FPGA. The fourth and final section presents the DPU accelerator for
Convolutional Neural Network (CNN) application.

21

CHAPTER 3. FPGA ACCELERATED APPLICATION

3.2 Field Programmable Gate Arrays

Figure 3.1: The basic structure of the FPGA

An FPGA is a semiconductor device, made up of a collection of "logic blocks",
"Input/Output Cells" and "interconnection resources", as shown in figure 3.1, that
can be reconfigured to connect the inputs and outputs (I/O) and logic blocks in a
variety of ways to perform massively paralleled, real-time processing. This specific
architecture, targeting the particular computation requirements of the algorithm,
results in a more optimal computing hardware. As a result, FPGAs devices repre-
sent a promising solution for low power computation.

CPUs and GPUs are instruction-based architectures, this makes them easier to
connect via software-based methods. This makes it easier for hackers to update and
adjust the system. However, FPGAs are configured by specifying a hardware cir-
cuit where the uniqueness of the task-driven FPGA requires unique tools to create,
special skills to program. This means that not only we have more control over our
hardware by design, but also it’s much more difficult to perform side channel attacks
or reverse-engineering on FPGA.

FPGAs are configured via a bitstream which is represented by a file containing
the binary data that codes the chip. One of the most significant advantages of
FPGAs is the ability to perform encryption and authentication. Encryption helps
preserve bitstream’s confidentiality. Authentication ensures the integrity of the data
and the source that is transmitting it. It helps to improve communication security
by eliminating falsified information.

One of the major manufacturers of the FPGA is Xilinx [27], an industrial com-
pany, which engages in the designs and development of programmable logic semi-
conductor devices and related software design tools.

22

CHAPTER 3. FPGA ACCELERATED APPLICATION

Xilinx provides System on Chip (SoC) FPGA device which is an integration of
a standalone processor with the FPGA architecture. Having the processor and the
FPGA fabric on the same silicon chip tremendously reduces production costs and
saves space on the circuit board.

3.3 Zynq MPSoC hardware overview
This section introduces the edge-based FPGA platform, which is the Zynq UltraScale
+ MPSoC ZCU104 evaluation board from Xilinx, represented in Figure 3.2.

Figure 3.2: Zynq UltraScale + MPSoC ZCU104 evaluation board

As specified in Figure 3.2, XCZU7EV Multi-Processor System-On-Chip (MP-
SOC) represents the heart of our platform which combines the processing system
(PS) and the programmable logic (PL). The PS part can be connected to the PL
part via multiple interfaces in order to integrate the hardware accelerators and other
functions in the PL logic that are accessible to the processors. The processing system
(PS is composed of three processing elements (Figure 3.3):

• Cortex-A53 Application Processing Unit (APU)-Arm v8 architecture-based
64-bit quad-core multiprocessing CPU.

• Cortex-R5 Real-time Processing Unit (RPU)-Arm v7 architecture-based 32-bit
dual real-time processing unit with dedicated tightly coupled memory (TCM).

• Mali-400 Graphics Processing Unit (GPU)-graphics processing unit with pixel
and geometry processor and 64 KB L2 cache.

PL part represents the Field programmable Gate Arrays(FPGA).

This platform’s heterogeneity and various levels of parallelism make it a useful
tool for a variety of applications such as signal processing, image processing, etc.

Both APU and FPGA can communicate together with the main memory via
high-performance buses. The FPGA uses these busses to read/write an array of
data from/to the main memory.

23

CHAPTER 3. FPGA ACCELERATED APPLICATION

Figure 3.3: The base components of XCZU7EV MPSoC

As any embedded system, ZCU104 needs an operating system to work with. This
last can be generated using some powerful tools such as petalinux or using a ready-
customised ubuntu image provided recently on the 14th of December 2021 by Canon-
ical and Xilinx [13].
This image is customised for Xilinx devices. All the necessary drivers and libraries
needed, in order to communicate, use, and update the FPGA device, are provided
in the Ubuntu image.

24

CHAPTER 3. FPGA ACCELERATED APPLICATION

3.4 Vitis

Figure 3.4: Vitis Unified Software Platform

Among the tools provided by Xilinx, there is Vitis which is an unified devel-
opment environment for Xilinx devices. This tool allows the development of the
software and hardware parts using languages adapted to software engineers and
artificial intelligence, like C, C++ or Python, in order to take advantage of the
FPGA. In other words, Vitis makes FPGA programming much more a question of
software development rather than hardware design. Vitis Unified Software Platform,
as shown in the Figure 3.4, consists of the following elements:

• Vitis target platform The target platform is the native hardware design for
the FPGA before adding any accelerator or any custom logic.

• Xilinx RunTime (XRT) XRT provides the drivers and an API to connect
the PS part with PL part. Indeed, it handles communication between the host
application (running on the APU) and the accelerated kernels. Key functions
of the Xilinx Runtime include: Downloading the FPGA binary / Memory
management between host and accelerator / Board management.

• Vitis core development kit The Vitis core development kit, is a set of
graphical and command-line developer tools that includes compilers and cross-
compilers for compiling source code into executables that can run on a specific
target device, as well as analyzers and debuggers for analysing application
performance and locating problems.

• Vitis accelerated libraries Vitis accelerated libraries are a set of open-
source, performance-optimised libraries that enable ready-to-use acceleration
for your existing application (written in C, C++, or Python). Vitis libraries
are provided for common arithmetic, statistics, linear algebra, and DSP func-
tions, as well as domain-specific applications like image processing and data
analytics. Vitis contains 26 libraries that cover a wide range of topics, includ-
ing artificial intelligence, image processing, finance, security, and mathematics.

25

CHAPTER 3. FPGA ACCELERATED APPLICATION

3.5 Accelerated application structure

Figure 3.5: Structure of an application interacting with the FPGA device

The application, interfacing with the FPGA, is composed of two parts (Figure
3.5): host code and kernel code with communication channels between them.

• Kernel code is part of the application where the computational task to be
executed is expressed. The kernel code is compiled into an executable device
binary(.xclbin) on the FPGA.

• Host code runs on the APU and computes functions that run on the FPGA
devices. Indeed, it is responsible for initialising the accelerator, allocating
memory and setting up data transfer points between the host and device and
triggering the execution of the kernels on the FPGA. The host program could
be written in C/C++ , Python.

The transactions between the host program and the kernel, including control and
data transfer, are managed by Xilinx Runtime (XRT) via API calls. The process
occurs across an AXI (Advanced eXtensible Interface) bus.

3.6 Sample FPGA application

3.6.1 Prepare the kernel code and host code for Vector add
In this section, we create a trivial vector-add, a simple example that allows us to
focus on the key concepts of FPGA acceleration on MPSoC. We used Vitis IDE to
create the host code and kernel code for our application.

26

CHAPTER 3. FPGA ACCELERATED APPLICATION

The objective of the vector-add function is to read two inputs vectors in1 and
in2, and computes the sum.
The program, that will be loaded into the Programmable Logic part, is the kernel
code discussed in the previous section. In this program, we described the architec-
ture of the accelerator. Indeed, the accelerator reads through the AXI interfaces the
2 inputs in1 and in2, computes the sum operation which will be described in the
host application, then map the output into another AXI interface.

The host code is programmed in C++, it manages the communication with the
FPGA through a specific API:

1. Through the AXI interface, the host application writes the data required by a
kernel into the global memory.

2. The host code sets up the kernel with its input parameters.

3. The host code triggers the execution of the kernel function on the FPGA.

4. The kernel code performs the required computation while reading data from
global memory, as necessary.

5. The kernel code writes data back to global memory and notifies the host that
it has completed its task.

6. The host code reads data back from global memory into the host memory and
continues processing as needed.

To develop an accelerator that is compatible with our platform Zynq Ultrascale
+ MPSoC ZCU104. Vitis needs a hardware description of the device we are using.
As shown in Figure 3.6, we have as input a hardware description file that describes
the device’s existing hardware. Vitis requires also the sysroot of the operating sys-
tem to use its libraries and ensures the host code will work also within this operating
system.

Vitis go through several stages: First, it constructs the accelerator. Then it con-
nects this custom accelerator to the default platform. It is responsible for compiling
the host code. In the end, we have an executable file that represents the host code,
as well as a kernel code compatible with the hardware architecture of the platform
Zynq Ultrascale + MPSoC ZCU104.

The Figure 3.6 resumes the input and the output of Vitis.

27

CHAPTER 3. FPGA ACCELERATED APPLICATION

Figure 3.6: Compile the Vector add on Vitis

3.6.2 Prepare the Platform Assets Container
A Platform Assets Container (PAC) is used to package custom boot assets. Indeed,
if we want to add an accelerator to the PL part, the system needs to be aware of it.
The PAC is a folder with a specific hierarchy, it contains files that will be used in
the boot process and kernel code for the accelerator which will be loaded in the PL
part. Indeed, the artifacts in Figure 3.6 are needed:

The required files for the PAC are described in the Table 3.1.

3.6.3 Activate the PAC on the device
To use the accelerator, a command-line tool called xlnx-config [26] is used to man-
age and manipulate the hardware platform for Xilinx devices with Ubuntu operating
system. The major goal of xlnx-config is to load custom hardware platforms, and
it does so by managing the installation of custom boot assets (bitstream, firmware,
and xclbin) while keeping the "golden" boot components that come with the certified
Ubuntu image.

Once the PAC is added to the boot partition of the SD card we can use xlnx-
config -q to query the system and report the boot assets available for the board.
In Figure 3.7, we have the example of “zcu104_vitis_hello_world” which includes

28

CHAPTER 3. FPGA ACCELERATED APPLICATION

Filename Description
bootgen.bif Bootgen config file used by xlnx-config

to package new boot.bin
fsbl.elf First Stage Boot Loader
bl31.elf ARM Trusted firmware
pmufw.elf Platfrom Management Unit Firmware
system.bit The Programmable Logic bitstream
system.dtb The Linux Device tree. This describes the hardware

that can be read by an operating system
.xclbin The container binary file specific to the accelerator.

It will be written in PL part

Table 3.1: The required files in PAC

the assets related to the vector add application (host code and kernel code) and the
boot assets for “Zynq UltraScale MPSoC ZCU104”.

Figure 3.7: Checking the current available HW configurations

29

CHAPTER 3. FPGA ACCELERATED APPLICATION

xlnx -config -a in Figure 3.8 is used to activate the configuration by using
the path to the manifest. It checks the system compatibility and then applies the
configuration by regenerating a boot binary based on the new system that includes
the new customised hardware.

Figure 3.8: Activate the configuration for the Vadd accelerator

The system must be restarted. xlnx-config will save the configuration after
activation. When we run the command xlnx-config -q we can see that the first
PAC has a star as shown in Figure 3.9. This indicates that the PAC containing the
accelerator for the Vector add application is activated.

Figure 3.9: Checking the activated HW configurations

After configuring our platform with the appropriate accelerator, we can start our
application by calling the host code (.exe) and passing as arguments the two inputs
in1 and in2 as well as the kernel code (.xclbin). Figure 3.10 shows the execution of
Vector add application. We display both the provided values to FPGA devices and
the computation result.

Figure 3.10: Executing Vector add application on the ZCU104 device

After running the application, we can notice in the Figure 3.11, the kernel code
is loaded in the PL part.

30

CHAPTER 3. FPGA ACCELERATED APPLICATION

Figure 3.11: Loading kernel code to PL part

3.7 Accelerate convolutional neural network
Unlike previous hardware designs focusing on specific functions, Vitis, specifically
Vitis AI, supports a DPU (deep-learning processor unit), dedicated to the convolu-
tional neural network (CNN). It also supports the basic functions of deep learning,
and developers can take advantage of DPUs to accelerate CNN inference.

The DPU supports the following network features: Convolution, Depthwise con-
volution, Deconvolution, Max or Average pooling, and Full connexion, ReLU fam-
ily(ReLU, ReLU6, and LeakyReLU) activations functions, Normalisation, and Split.
It is integrated into the programmable logic (FPGA) of the Xilinx Zynq UltraScale+
MPSoC zcu104 and integrated into the processing system (ARM) through AXI in-
terconnect to perform CNN inference.

31

CHAPTER 3. FPGA ACCELERATED APPLICATION

Each DPU is defined by a fingerprint, which is a way to encode the configuration
of the DPU.
So this allows the Vitis compiler to know how to compile the model for the right
DPU, and during runtime, this allows to check that the compiled model and DPU
are compatible.

In our project, the vehicle detection program is deployed on the FPGA using the
DPU. We initialized the hardware platform with the right DPU. And we compiled
the vehicle detection model to match the configuration of the DPU.

3.8 Conclusion
In this chapter, we went over basic terminology to help clarify the important notion
of application acceleration on an FPGA. As a result, we may conclude that hardware-
accelerated applications can be containerized and deployed via an Edge-to-cloud
solution. As a reminder, our goal in this project is to be able to update the SONAL
program via the cloud. For FFT and matrix multiplication presented in the first
chapter, there is no need to change those parts. However, for the CNN, we can
update the DPU from the cloud, by feeding it with the new version of the model
which will configure the DPU on the programmable logic part. The next chapter
will focus on containerizing the hardware-accelerated application.

32

CHAPTER 4
DEPLOYMENT OF FPGA-ACCELERATED

APPLICATION

4.1 Introduction
Containerizing FPGA-accelerated applications have a variety of advantages, includ-
ing simplicity of deployment, configuring the FPGAs remotely, device separation,
and many more. Docker containers are most typically used to quickly deploy CPU-
based applications across several machines. Thus, for hardware-accelerated applica-
tions, it is a challenging task.

After grasping the main notion of communication between the processing system
and the programmable logic, and having a clear understanding of some basic termi-
nologies linked to FPGA accelerated applications, this chapter will take us through
the process of containerization.

This chapter is divided into four parts: The first section deals with containerizing
FPGA-accelerated applications, while the second and third sections deal with deliv-
ering them via Azure IoT Edge and Nuvla, respectively. The last section presents
the deployment of FFT part through Azure and Nuvla.

4.2 Containerize FPGA application
Before we go any further, it’s essential to recognise the notion of containerization.
A container is a software unit that encapsulates code and all of its dependencies.
The benefits of containerization are numerous [17]. On the one hand, it enables the
application to move from one computing environment to another quickly and reli-
ably. Indeed, rather than creating the application for thousands of devices, we can
just create a packaged version and distribute it to all devices, because the container
bundles all of the dependencies. Container portability comes from their ability to
share the host machine’s operating system kernel. To put it another way, numerous

33

CHAPTER 4. DEPLOYMENT OF FPGA-ACCELERATED APPLICATION

containers can run on the same machine and share the OS kernel, each running as
isolated in user space.

Containerization, on the other hand, adds an additional layer of protection
through its isolation. Because containers are decoupled from one another, each
program runs in its self-contained environment. This ensures that even if one con-
tainer’s security is compromised, the security of the other containers on the same
host is maintained. We chose Docker since it is the most widely used containeriza-
tion tool [24].

The primary goal of Containerization in our project is to package the SONAL
application and deploy it using a Cloud to the Edge FPGA. So, in the long run,
we can update our program whenever a new version of the AI model with improved
performance is released.

In this context, to illustrate the creation of the Docker image for the FPGA-
accelerated application, we will use the Vector add example presented in the previ-
ous chapter.

As illustrated in Figure 4.1, to run the application inside the container we need
to package anything that resides in the user space, especially the XRT libraries. As
defined in the fourth section of chapter three, it is responsible for downloading the
FPGA bitstream and managing the memory between the host and the accelerator.
We still have a dependency on the kernel and the hardware. For kernel, the container
shares it with the host application so it will have access to the drivers on kernel space.

Figure 4.1: The environment needed for the container in order to communicate with
the FPGA device

34

CHAPTER 4. DEPLOYMENT OF FPGA-ACCELERATED APPLICATION

The first step is to develop a base docker image. A base image is an image that
is used to create all of our container images. In this project, we create our own base
image from scratch, based on the root filesystem of the Ubuntu Xilinx official image.

This is not the best solution because the image is 3.57GB in size, but it was
the only option because the Xilinx official site does not have XRT packages for the
embedded platform [28]

If this is the case, we can use Ubuntu as a base image, which is a lightweight
image, and then install the necessary dependencies.

A base image stored on Docker Hub [9]. After that, we will use this image as a
baseline for our containers.

Figure 4.2 represents the dockerfile to build the container. We need to copy the
kernel code and the host code to the container.

Figure 4.2: Pass the host code and the kernel code to the container

Docker containers are "unprivileged" by default. This is due to the fact that a
container is not able to access any devices by default, but a "privileged" container is.
The—device flag can be used to restrict access to a specific device or devices. It
gives us the option of specifying one or more devices that will be accessible within
the container.

In this example, we limited the access to FPGA device by mentioning “–device=/dev/dri/renderD128:/dev/dri/renderD128
”.

Figure 4.3: Run the Vector add container

The two vectors are added using the FPGA device after successful execution
(Figure 4.3), and the result is displayed through the container.

35

CHAPTER 4. DEPLOYMENT OF FPGA-ACCELERATED APPLICATION

4.3 Deployment through Azure IoT Edge
As mentioned in the second chapter: Azure provides an environment for edge com-
puting to monitor and install code on devices. To turn a device into an Azure edge
device, we must first create a device identity for our IoT edge device so that it can
communicate with the IoT hub, and then associate a physical device with a device
identity using a unique device connection string. The state of the device linked to
Azure IoT Edge Cloud is shown in figure4.4.

Figure 4.4: The Edge device based FPGA is connected to Azure IoT edge

When a device is connected to Azure IoT Edge, two docker containers, shown
in figure 4.5, stand out: The IoT Edge agent, which makes it easier to deploy and
monitor modules on IoT Edge devices, And the IoT hub, which is in charge of
communication between modules on the IoT Edge device, as well as communication
between the device and the IoT Hub.

Figure 4.5: Two docker containers running on the Edge device based FPGA and
representing the IoT Edge Runtime

36

CHAPTER 4. DEPLOYMENT OF FPGA-ACCELERATED APPLICATION

After connecting the device to the IoT Hub and configuring the Edge runtime
on the device, we can now use the Cloud to deploy our Vector-add application. To
accomplish so, we built and stored our image application using Azure Container
Registry (Figure 4.6). In Azure, you can develop, store, and manage container
images and artifacts in a private registry, which is a great feature.

Figure 4.6: Vector add image stored in Azure Container Registry

Figure 4.7 illustrates the docker containers running on the Edge-based FPGA
device. The two components for Edge Runtime and the FPGA accelerated applica-
tion. To conclude, we create a Vector add image and store it on Azure Container

Figure 4.7: Vector add module running on the Edge-based FPGA device

Registry, as seen in Figure 4.8. Then we distributed it to an FPGA device at the
edge. After that, we can see the module successfully executing on the edge by sub-
mitting the operation to the FPGA. The outcome can be viewed using the Azure
Interface (Figure 4.9).

37

CHAPTER 4. DEPLOYMENT OF FPGA-ACCELERATED APPLICATION

Figure 4.8: The workflow to deploy an application through Azure IoT Edge to the
Edge-based FPGA device

Figure 4.9: Vector add through Azure interface

4.4 Deployment through Nuvla/NuvlaBox
Nuvla provides an environment for edge computing to monitor and install code on
devices, as presented in chapter two. To make the connection between the edge-
based FPGA device and Nuvla possible. NuvlaEdge Engine must be installed in
this one.

38

CHAPTER 4. DEPLOYMENT OF FPGA-ACCELERATED APPLICATION

NuvlaEdge is launched through a docker-compose file that connects our edge de-
vice to the Nuvla. Once we run it, we have our edge device linked to the Nuvla
cloud. After passing through those steps, we achieved to connect the edge-based
FPGA to Nuvla.io, as shown in Figure 4.10. When a device is connected to Nuvla,

Figure 4.10: The Edge based FPGA device connected to Nuvla.io

several components, docker containers, stand out, which represent the runtime of
NuvlaEdge:

• Agent:

– Telemetry report
– Communication with Nuvla

• System Manager:

– Container supervisor
– Data Gateway controller

• Compute-API:

– Host Docker TCP connection
– Key registration

• VPN Client:

– A secure VPN tunne to ssh to the edge device

• Security:

– Vulnerabilities report
– Periodical security check

• Data Gateway:

39

CHAPTER 4. DEPLOYMENT OF FPGA-ACCELERATED APPLICATION

– Sending messages
– Acquisition of sensor data

• Job Engine:

– Job processing
– Connectionless oriented reader

• On Stop:

– Deployment cleanup

40

CHAPTER 4. DEPLOYMENT OF FPGA-ACCELERATED APPLICATION

We may now launch the FPGA application once the device is attached. To do so,
Nuvla.io offers a "App Store" interface via which you may develop the application
as a docker-compose and then deploy it to the edge device, as illustrated in Figure
4.11. The device will pull the image from Docker Hub when you click deploy on
Nuvla.io.

Figure 4.11: Deploy Vector add application on NuvlaBox

After deployment we can see through logs of the vadd_fpga container that is
successfully computed on the FPGA as illustrated in Figure 4.12

Figure 4.12: Vadd_fpga application running in NuvlaBox

41

CHAPTER 4. DEPLOYMENT OF FPGA-ACCELERATED APPLICATION

4.5 Deploy FFT accelerated application
As the SONAL application is not yet ready to work on it. We tested deploying the
FFT part. FFT’s basic concept is to take a set of time domain waveform samples
and process them to create a new set of frequency domain spectrum samples.

The same procedures had been taken with Vitis to construct the FFT acceler-
ator. We have two outputs from Vitis, as we discussed in the vector add example.
We have kernel code and instead of building a host code in the format ".exe", we
generate a library that will be used in SONAL code.

Using numpy.rfft on the CPU, the total time to compute the FFT was roughly
52 milliseconds. Numpy.rfft is a function that uses an efficient algorithm called the
Fast Fourier Transform (FFT) supplied by numpy to compute the one-dimensional
n-point discrete Fourier Transform (DFT) of a real-valued array. For the same data,
the execution time is roughly 16 ms.

To put it another way, the FFT is three times faster. In SONAL application the
FFT is used continuously, so the edge device will gain more time to execute this part.

42

CHAPTER 4. DEPLOYMENT OF FPGA-ACCELERATED APPLICATION

After ensuring that the FFT working locally, we containerized a part of the
SONAL application that uses the FFT and we deployed it through Nuvla and Azure
as demonstrated in Figure 4.13 and Figure 4.14

Figure 4.13: FFT container runing on NuvlaBox

Figure 4.14: FFT container running on Azure IoT Edge

4.6 Conclusion
As we saw with the Vector add accelerator and FFT part, FPGA applications can
be provided as Docker images. Using Docker to execute accelerated applications
has various advantages over running them directly on a host server. It provides for
a self-contained, pre-validated setup within a shareable image that can be readily
distributed via Docker Hub or any other registry.

43

GENERAL CONCLUSION

As noise pollution becomes a major public health concern, the Noise Radar project
could be a very useful solution in the Noise market. On the one hand, it provides
a useful service and a great need for many companies, particularly governmental
entities, essentially by letting go of the old method of manually controlling annoy-
ing vehicles with the policeman. On the other hand, this project may assist the
government in creating a map of noisy areas.

The idea of the project is to develop a novel Noise Radar technology, capable of
automatically identifying noise activities for different classes of vehicles via acoustic
monitoring. As performance and power consumption constraints must be satisfied,
while permitting system evolvability with a security-by-design approach, a solution
based on an FPGA was chosen as the best trade-off. This represents a challenging
task for us. Our work aims to implement an adaptive, Edge-Cloud-based FPGA
NoRa platform, for sensors management at a city scale. The self-adaptive aspect
provides automatic provisioning and continuous delivery of intelligence to the sen-
sors.

To do so, we began by looking for edge-to-cloud solutions that would be suitable
for the hardware we are developing. This research assisted us in highlighting the
most widely used edge-to-cloud technologies. As a result of this step, we ruled out
Balena because it did not fit our use case, as well as Google. For the rest of the solu-
tions, Azure IoT Edge, Nuvla, and AWS are container-based technologies, that can
be used in almost any hardware environment. We did not select the best technology
for two reasons. First and foremost, this is dependent on the customer, so our goal
is to make it open and provide a variety of solutions. Second, doing this type of
comparison is dependent on the cost of the application, which we can’t estimate
right now because we need to have the SONAL application ready to estimate the
type of instances that can be used in the cloud to train the models.

As a second step, we interfaced with the workflow of an accelerated FPGA appli-
cation, starting with a sample application, to gain a thorough understanding of this
type of application, as the work will be surely the same for the SONAL application.

44

General Conclusion

Making the application work on Ubuntu was a bit difficult due to the recent release
of this image for the Zynq UltraScale+ MPSoC ZCU104. When we were working
on it, the documentation for activating the accelerators on Xilinx’s official website
was unavailable.

The following step was to containerize the FPGA-accelerated application. We
worked to ensure that the same dependencies and library versions were present in-
side the container so that the application could communicate with the FPGA. This
step enabled us to proceed and deploy the accelerated application via the cloud. As
a result, we are confident that we can self-adapt the SONAL applications, which
include some FPGA-accelerated applications.

During this work, we faced some difficulties at the beginning. Indeed, the
use of the first board provided by Avnet [2] was a constraint to test these tech-
nologies because it supports a customised OS ‘PetaLinux’. This OS is defined as
a stack of layers. Each layer represents a software application that needs to be
added/configured/recompiled at each software installation. This case doesn’t align
with the workflow of this project and will be a constraint in the future because
PetaLinux does not support any package managers which help install software ap-
plications on the OS. Adding a software application requires layers, and rebuilding
the OS. By using the Zynq UltraScale + MPSOC ZCU104 board which supports the
Ubuntu distribution, we were able to test the different edge-to-cloud technologies
without dealing with OS issues.

As future work, We will optimise the base docker image, which serves as the
foundation for our containers, because it is large and takes time to deploy on the
edge device.
Another aspect to consider is the security of the DPU portion that is used to speed
up the classification and detection Neural Networks. The model loaded to the DPU,
in this case, is not a bitstream. Thus, to protect Securaxis’ intellectual property, we
need to look for more security in this area.

45

REFERENCES

[1] ② NORA: Noise Radar - Distributed Acoustic Sensor Network for Traffic
Noise Impact Measurement - Données de base. Dec. 2020. url: https://
www.aramis-a.admin.ch/Grunddaten/?ProjectID=47896.

[2] AES-ZU3EG-1-SK-G. June 2022. url: https : / / www . avnet . com / shop /
us / products / avnet - engineering - services / aes - zu3eg - 1 - sk - g -
3074457345635014225.

[3] Azure Cloud Storage Solutions and Services | Microsoft Azure. June 2022. url:
https://azure.microsoft.com/en-us/product-categories/storage.

[4] Azure Container Registry | Microsoft Azure. June 2022. url: https://azure.
microsoft.com/en-us/services/container-registry.

[5] balenaEngine - A container engine purpose-built for IoT devices. June 2022.
url: https://www.balena.io/engine.

[6] balenaOS - Docs. June 2022. url: https : / / www . balena . io / os / docs /
architecture.

[7] balenaOS - Run Docker containers on embedded IoT devices. June 2022. url:
https://www.balena.io/os.

[8] Cloud Storage | Google Cloud. May 2022. url: https://cloud.google.com/
storage.

[9] Docker Hub. June 2022. url: https : / / hub . docker . com / repository /
docker/abir45ch/docker_base_img_xilinx.

[10] Gestion des appareils IoT | Intégration, organisation et mise à jour à distance
| AWS IoT Device Management. June 2022. url: https://aws.amazon.com/
fr/iot-device-management.

[11] Global Noise Monitoring Market Size and Growth Forecast 2025. June 2022.
url: https://www.bccresearch.com/partners/verified-market-research/
global-noise-monitoring-market.html.

[12] Google Cloud IoT – Services IoT entièrement gérés | Google Cloud. June 2022.
url: https://cloud.google.com/solutions/iot.

46

https://www.aramis-a.admin.ch/Grunddaten/?ProjectID=47896
https://www.aramis-a.admin.ch/Grunddaten/?ProjectID=47896
https://www.avnet.com/shop/us/products/avnet-engineering-services/aes-zu3eg-1-sk-g-3074457345635014225
https://www.avnet.com/shop/us/products/avnet-engineering-services/aes-zu3eg-1-sk-g-3074457345635014225
https://www.avnet.com/shop/us/products/avnet-engineering-services/aes-zu3eg-1-sk-g-3074457345635014225
https://azure.microsoft.com/en-us/product-categories/storage
https://azure.microsoft.com/en-us/services/container-registry
https://azure.microsoft.com/en-us/services/container-registry
https://www.balena.io/engine
https://www.balena.io/os/docs/architecture
https://www.balena.io/os/docs/architecture
https://www.balena.io/os
https://cloud.google.com/storage
https://cloud.google.com/storage
https://hub.docker.com/repository/docker/abir45ch/docker_base_img_xilinx
https://hub.docker.com/repository/docker/abir45ch/docker_base_img_xilinx
https://aws.amazon.com/fr/iot-device-management
https://aws.amazon.com/fr/iot-device-management
https://www.bccresearch.com/partners/verified-market-research/global-noise-monitoring-market.html
https://www.bccresearch.com/partners/verified-market-research/global-noise-monitoring-market.html
https://cloud.google.com/solutions/iot

REFERENCES

[13] Install Ubuntu on Xilinx | Ubuntu. June 2022. url: https://ubuntu.com/
download/amd-xilinx.

[14] Intelligence à la périphérie IoT – AWS IoT Greengrass – Amazon Web Ser-
vices. June 2022. url: https://aws.amazon.com/fr/greengrass.

[15] IoT Hub | Microsoft Azure. June 2022. url: https://azure.microsoft.
com/en-us/services/iot-hub.

[16] kgremban. Understand Azure IoT Hub messaging. June 2022. url: https:
//docs.microsoft.com/en- us/azure/iot- hub/iot- hub- devguide-
messaging.

[17] Roberto Morabito et al. “Evaluating performance of containerized IoT services
for clustered devices at the network edge”. In: IEEE Internet of Things Journal
4.4 (2017), pp. 1019–1030.

[18] PatAltimore. Learn how the runtime manages devices - Azure IoT Edge. June
2022. url: https://docs.microsoft.com/en-us/azure/iot-edge/iot-
edge-runtime?view=iotedge-2018-06.

[19] Pub/Sub pour l’intégration des applications et des données | Cloud Pub/Sub |
Google Cloud. May 2022. url: https://cloud.google.com/pubsub.

[20] Registre de conteneurs entièrement géré – Tarification Amazon Elastic Con-
tainer Registry – Amazon Web Services. June 2022. url: https : / / aws .
amazon.com/fr/ecr.

[21] Road traffic remains biggest source of noise pollution in Europe. Nov. 2020.
url: https://www.eea.europa.eu/highlights/road-traffic-remains-
biggest-source.

[22] SixSq S. A. Enable your edge with our management platform as a service. May
2022. url: https://nuvla.io.

[23] SixSq S. A. Secure and Intelligent Edge Computing Software. June 2022. url:
https://sixsq.com/products-and-services/nuvlabox/overview.

[24] Gabriel N Schenker. Learn Docker-Fundamentals of Docker 18. x: Everything
you need to know about containerizing your applications and running them in
production. Packt Publishing Ltd, 2018.

[25] Securaxis – sounds analytics for smart cities. June 2022. url: https : / /
securaxis.com.

[26] Snaps - xlnx-config Snap for Certified Ubuntu on Xilinx Devices - Xilinx Wiki
- Confluence. June 2022. url: https : / / xilinx - wiki . atlassian . net /
wiki/spaces/A/pages/2057043969/Snaps+- +xlnx- config+Snap+for+
Certified+Ubuntu+on+Xilinx+Devices.

[27] Xilinx - Adaptable. Intelligent. June 2022. url: https://www.xilinx.com.
[28] Xilinx Runtime Library (XRT). June 2022. url: https://www.xilinx.com/

products/design-tools/vitis/xrt.html#gettingstarted.

47

https://ubuntu.com/download/amd-xilinx
https://ubuntu.com/download/amd-xilinx
https://aws.amazon.com/fr/greengrass
https://azure.microsoft.com/en-us/services/iot-hub
https://azure.microsoft.com/en-us/services/iot-hub
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-messaging
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-messaging
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-messaging
https://docs.microsoft.com/en-us/azure/iot-edge/iot-edge-runtime?view=iotedge-2018-06
https://docs.microsoft.com/en-us/azure/iot-edge/iot-edge-runtime?view=iotedge-2018-06
https://cloud.google.com/pubsub
https://aws.amazon.com/fr/ecr
https://aws.amazon.com/fr/ecr
https://www.eea.europa.eu/highlights/road-traffic-remains-biggest-source
https://www.eea.europa.eu/highlights/road-traffic-remains-biggest-source
https://nuvla.io
https://sixsq.com/products-and-services/nuvlabox/overview
https://securaxis.com
https://securaxis.com
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/2057043969/Snaps+-+xlnx-config+Snap+for+Certified+Ubuntu+on+Xilinx+Devices
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/2057043969/Snaps+-+xlnx-config+Snap+for+Certified+Ubuntu+on+Xilinx+Devices
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/2057043969/Snaps+-+xlnx-config+Snap+for+Certified+Ubuntu+on+Xilinx+Devices
https://www.xilinx.com
https://www.xilinx.com/products/design-tools/vitis/xrt.html#gettingstarted
https://www.xilinx.com/products/design-tools/vitis/xrt.html#gettingstarted

	General Introductionto.44em.
	Presentation of Securaxis' software
	Introduction
	SONAL software
	SONAL software accelerated on FPGA
	Improve the performance of SONAL application
	Conclusion

	Comparative study between Edge-to-Cloud solutions
	Introduction
	Balena
	Google Cloud Platform
	Azure IoT Edge
	NuvlaEdge
	AWS GreenGrass
	Conclusion

	FPGA accelerated application
	Introduction
	Field Programmable Gate Arrays
	 Zynq MPSoC hardware overview
	Vitis
	Accelerated application structure
	Sample FPGA application
	Prepare the kernel code and host code for Vector add
	Prepare the Platform Assets Container
	Activate the PAC on the device

	Accelerate convolutional neural network
	Conclusion

	Deployment of FPGA-accelerated application
	Introduction
	Containerize FPGA application
	Deployment through Azure IoT Edge
	Deployment through Nuvla/NuvlaBox
	Deploy FFT accelerated application
	Conclusion

	General Conclusionto.44em.

